The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements) is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed.
Abstract. The aim of this article is to introduce the operation principles of conductometric solid-state dosimeter-type gas sensors, which have found increased attention in the past few years, and to give a literature overview on promising materials for this purpose. Contrary to common gas sensors, gas dosimeters are suitable for directly detecting the dose (also called amount or cumulated or integrated exposure of analyte gases) rather than the actual analyte concentration. Therefore, gas dosimeters are especially suited for low level applications with the main interest on mean values. The applied materials are able to change their electrical properties by selective accumulation of analyte molecules in the sensitive layer. The accumulating or dosimeter-type sensing principle is a promising method for reliable, fast, and long-term detection of low analyte levels. In contrast to common gas sensors, few devices relying on the accumulation principle are described in the literature. Most of the dosimeter-type devices are optical, mass sensitive (quartz microbalance/QMB, surface acoustic wave/SAW), or field-effect transistors. The prevalent focus of this article is, however, on solid-state gas dosimeters that allow a direct readout by measuring the conductance or the impedance, which are both based on materials that change (selectively in ideal materials) their conductivity or dielectric properties with gas loading. This overview also includes different operation modes for the accumulative sensing principle and its unique features.
An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.