We have performed a detailed study of the order and dynamics of the commercially available BL038 liquid crystal (LC) inside nanosized (50-300 nm) droplets of a reflection-mode holographic-polymer dispersed liquid crystal (H-PDLC) device where LC nanodroplet layers and polymer layers are alternately arranged, forming a diffraction grating. We have determined the configuration of the LC local director and derived a model of the nanodroplet organization inside the layers. To achieve this, we have taken advantage of the high sensitivity of the ESR spin probe technique to study a series of temperatures ranging from the nematic to the isotropic phase of the LC. Using also additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director configuration is a uniaxial quasi-monodomain aligned along the nanodroplet long axis. Interestingly, at room temperature the molecules tend to keep their average orientation even when the layers are perpendicular to the magnetic field, suggesting that the molecular organization is dictated mainly by the confinement. This result might explain, at least in part, (i) the need for switching voltages significantly higher and (ii) the observed faster turn-off times in H-PDLCs compared to standard PDLC devices.
We have studied, using Monte Carlo computer simulations, the effects that nanoparticles of similar size and three different shapes (spherical, elongated and discotic) dispersed at different concentrations in a liquid crystal (LC), have on the transition temperature, order parameter and mobility of the suspension. We have modelled the nanoparticles as berry-like clusters of spherical Lennard-Jones sites and the NP with a Gay-Berne model. We find that the overall phase behaviour is not affected by the addition of small amounts (xN = 0.1-0.5%) of nanoparticles, with the lowest perturbation obtained with disc-like nanoparticles at the lowest concentration. We observe a general decrease of the clearing temperature and a reduction in the orientational order with a change in its temperature variation, particularly in the case of the xN = 0.5% dispersions and with a more pronounced effect when the nanoparticles are spherical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.