The parafascicular nucleus (Pf) of the thalamus provides major projections to the basal ganglia, a set of subcortical nuclei involved in action initiation. Here, we show that Pf projections to the subthalamic nucleus (STN), but not to the striatum, are responsible for movement initiation. Because the STN is a major target of deep brain stimulation treatments for Parkinson’s disease, we tested the effect of selective stimulation of Pf-STN projections in a mouse model of PD. Bilateral dopamine depletion with 6-OHDA created complete akinesia in mice, but Pf-STN stimulation immediately and markedly restored a variety of natural behaviors. Our results therefore revealed a functionally novel neural pathway for the initiation of movements that can be recruited to rescue movement deficits after dopamine depletion. They not only shed light on the clinical efficacy of conventional STN DBS but also suggest more selective and improved stimulation strategies for the treatment of parkinsonian symptoms.
The degree of behavioural control that an organism has over a stressor is a potent modulator of the stressor's impact; controllable stressors produce none of the neurochemical and behavioural sequelae that occur if the stressor is uncontrollable. Research demonstrating the importance of control and the neural mechanisms responsible has been conducted almost entirely with male rats. It is unknown if behavioural control is stress blunting in females, and whether or not a similar resilience circuitry is engaged. Female rats were exposed to controllable, yoked uncontrollable or no tailshock. In separate experiments, behavioural (juvenile social exploration, fear and shuttle box escape) and neurochemical (activation of dorsal raphe serotonin and dorsal raphe-projecting prelimbic neurons) outcomes, which are sensitive to the dimension of control in males, were assessed. Despite successful acquisition of the controlling response, behavioural control did not mitigate dorsal raphe serotonergic activation and behavioural outcomes induced by tailshock, as it does in males. Moreover, behavioural control failed to selectively engage prelimbic cells that project to the dorsal raphe as in males. Pharmacological activation of the prelimbic cortex restored the stress-buffering effects of control. Collectively, the data demonstrate stressor controllability phenomena are absent in females and that the protective prelimbic circuitry is present but not engaged. Reduced benefit from coping responses may represent a novel approach for understanding differential sex prevalence in stress-related psychiatric disorders.
Adverse life events can lead to stable changes in brain structure and function and are considered primary sources of risk for post‐traumatic stress disorder, depression and other neuropsychiatric disorders. However, most individuals do not develop these conditions following exposure to traumatic experiences, and research efforts have identified a number of experiential factors associated with an individual's ability to withstand, adapt to and facilitate recovery from adversity. While multiple animal models of stress resilience exist, so that the detailed biological mechanisms can be explored, studies have been disproportionately conducted in male subjects even though the prevalence and presentation of stress‐linked disorders differ between sexes. This review focuses on (a) the mechanisms by which experiential factors (behavioral control over a stressor, exercise) reduce the impact of adverse events as studied in males; (b) whether other manipulations (ketamine) that buffer against stress‐induced sequelae engage the same circuit features; and (c) whether these processes operate similarly in females. We argue that investigation of experiential factors that produce resistance/resilience rather than vulnerability to adversity will generate a unique set of biological mechanisms that potentially underlie sex differences in mood disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.