The pond snail Lymnaea stagnalis is a useful model system for studying the neural basis of behaviour but the mechanosensory inputs that impact on behaviours such as respiration, locomotion, reproduction and feeding are not known. In Aplysia, the peptide sensorin-A appears to be specific to a class of central mechanosensory neurons. We show that in the Lymnaea central nervous system sensorin-A immunocytochemistry reveals a discrete pattern of staining involving well over 100 neurons. Identifiable sensorin positive clusters of neurons are located in the buccal and cerebral ganglia, and a single large neuron is immunopositive in each pedal ganglion. These putative mechanosensory neurons are not in the same locations as previously identified motoneurons, interneurons or neurosecretory cells. As would be expected for a mechanoafferent, sensorin positive fibres were found in nerve tracts innervating the body wall. This study lays the foundation for future electrophysiological and behavioural analysis of these putative mechanosensory neurons.
Identified mechanosensory neurons of Aplysia are established model neurons for studies on learning and memory, and for examining responses to axonal injury. Although many characteristics of these sensory neurons have received intensive study, the nature of the peripheral mechanoreceptive endings remains unknown. Identification of a peptide, sensorin, specific in Aplysia for mechanosensory neurons, led to the development of an antibody which proved useful in studying the peripheral morphology of these neurons. Immunostaining for sensorin in tail body wall revealed that sensorin is present in peripheral arborizations. Examination of sensorin-positive fibers in the periphery revealed that they terminate as coiled structures in the muscle layer of the body wall. These coiled structures (approximately 0.5 microns diameter processes, 2-3 microns across the coil, approximately 60 microns long) run parallel to muscle fibers and have a pitch of about one turn per 4 microns. Sensorin immunostaining was particularly intense in varicosities, both along peripheral fibers and along the coiled structure. The localization of sensorin suggests that it may be released peripherally where it could have various paracrine and/or autocrine neuromodulatory actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.