Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) often present with overlapping symptoms and cognitive impairments, such as increased fluctuations in attentional performance measured by increased reaction-time variability (RTV). We previously provided initial evidence of shared and distinct event-related potential (ERP) impairments in ADHD and BD in a direct electrophysiological comparison, but no study to date has compared neural mechanisms underlying attentional impairments with finer-grained brain oscillatory markers. Here, we aimed to compare the neural underpinnings of impaired attentional processes in ADHD and BD, by examining event-related brain oscillations during a reaction-time task under slow-unrewarded baseline and fast-incentive conditions. We measured cognitive performance, ERPs and brain-oscillatory modulations of power and phase variability in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. Compared to controls, both ADHD and BD groups showed increased RTV in the baseline condition and increased RTV, theta phase variability and lower contingent negative variation in the fast-incentive condition. Unlike controls, neither clinical group showed an improvement from the slow-unrewarded baseline to the fast-incentive condition in attentional P3 amplitude or alpha power suppression. Most impairments did not differ between the disorders, as only an adjustment in beta suppression between conditions (lower in the ADHD group) distinguished between the clinical groups. These findings suggest shared impairments in women with ADHD and BD in cognitive and neural variability, preparatory activity and inability to adjust attention allocation and activation. These overlapping impairments may represent shared neurobiological mechanisms of attentional dysfunction in ADHD and BD, and potentially underlie common symptoms in both disorders.Electronic supplementary materialThe online version of this article (10.1007/s10548-018-0625-z) contains supplementary material, which is available to authorized users.
The differential diagnosis of attention deficit hyperactivity disorder (ADHD) in adulthood is complicated by comorbid disorders, but also by the overlapping of main symptoms such as inattentiveness, impulsivity, and hyperactivity with other disorders. Neuropsychological tests like continuous performance tests (CPT) try to solve this dilemma by objectively measurable parameters. We investigated in a cohort of n=114 patients presenting to an ADHD outpatient clinic how well a commercially available CPT test (QbTest ®) can differentiate between patients with ADHD (n=94) and patients with a disconfirmed ADHD diagnosis (n=20). Both groups showed numerous comorbidities, predominantly depression (27.2% in the ADHD group vs. 45% in the non-ADHD group) and substance-use disorders (18.1% vs. 10%, respectively). Patients with ADHD showed significant higher activity (2.07 ± 1.23) than patients without ADHD (1.34 ± 1.27, dF=112; p=0.019), whereas for the other core parameters, inattention and impulsivity no differences could be found. Reaction time variability has been discussed as a typical marker for inattention in ADHD. Therefore, we investigated how well ex-Gaussian analysis of response time can differentiate between ADHD and other patients, showing, that it does not help to identify patients with ADHD. Even though patients with ADHD showed significantly higher activity, this parameter differed only poorly between patients (accuracy AUC 65% of an ROC-Curve). We conclude that CPTs do not help to identify patients with ADHD in a specialized outpatient clinic. The usability of this test for differentiating between ADHD and other psychiatric disorders is poor and a sophisticated analysis of reaction time did not decisively increase the test accuracy.
Neurodevelopmental disorders – including attention‐deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders – manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome‐wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence – from two or more studies from independent research groups, with results going into the same direction – of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi‐level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost‐effectiveness, before they can be implemented in daily clinical practice.
HighlightsHigh-intensity exercise improved brain measures of attention processes.Fitness and physical activity level were not related to degree of improvement.We found no effects of exercise on subsequent Flanker and Reaction-time tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.