Previous in vitro experiments have shown that lead can inhibit PMN chemotaxis, phagocytosis and superoxide formation. Moreover, we have observed an inhibition of PMN chemotaxis in workers occupationally exposed to lead with a mean blood lead concentration of 3.06 mumol/l. The present study was carried out to evaluate locomotion and luminol assisted chemiluminescence (CL) of polymorphonuclear leukocytes (PMN) harvested from ten lead occupationally exposed workers with blood lead concentrations of 1.59 mumol/l (SD 0.27 mumol/l). Since lipids affect PMN activity and lipid composition is modified in erythrocytes of lead workers, PMN lipids were also studied. Ten healthy male subjects of the same age were taken as controls. Chemotaxis, i.e. locomotion stimulated through a specific membrane receptor, was impaired in the PMN of lead workers, but random migration, i.e. unstimulated cell locomotion, and respiratory burst were both unmodified. Cholesterol and phospholipids were not changed, but the percentage of arachidonic acid was significantly increased. The release of LTB4, generated by the oxidative metabolism of arachidonic acid, was increased. CL, which detects reactive oxygen species (ROS), was unmodified, but this lack of change could be the result of an increase in ROS, due to the augmentated percentage of arachidonic acid, and of a decrease in ROS, due to a direct inhibitory effect of lead on ROS generation. On the basis of the results from these ex vivo experiments, the conclusion that chemotaxis is the PMN function primarily affected by lead was confirmed. PMN are considered to be one of the first cellular targets for the action of lead; low exposure to lead modifies their activity and mainly modifies chemotaxis and LTB4 production.
Chemotaxis and receptor independent phagocytosis of human polymorphonuclear leukocytes (PMNs) exposed to lead in vitro (concentrations between 1.2 microM and 115 microM) were studied. Chemotaxis was measured in Boyden chambers and phagocytosis was investigated using latex beads. Additional methods were also applied. Superoxide anion formation from PMNs activated with preopsonized zymosan was quantified as superoxide dismutase-inhibitable reduction of ferricytochrome c. Steady state fluorescence polarization was performed using trimethylammonium diphenylexatriene (TMA-DPH). Lead concentrations were highly correlated both with decreased chemotactic activity (r = 0.70 p less than 0.01) and with decreased phagocytosis (r = 0.68 p less than 0.01). Ferricytochrome c reduction was not significantly affected. An increase in fluorescence polarization was recorded at the highest concentration of lead used, i.e. 57.6 microM and 115 microM, both in unstimulated PMNs and in PMNs activated with N-formyl-methionyl-leucyl-phenylalanine chemotactic peptide (n-FMLP). Moreover, an increase in the fluorescence polarization was observed in PMNs pretreated with a microtubule disrupting drug, exposed to lead concentrations of 14.4 microM and 57.6 microM and then activated with n-FMLP; no increase was recorded at the lowest lead concentrations used, i.e. 1.2 microM and 3.6 microM. The possible interaction of lead with the membrane-cytoskeleton apparatus is discussed.
We studied one sample of commercial sepiolite and two samples of commercial vermiculite--clay minerals proposed as replacements for asbestos--and tested in vitro their abilities to activate complement, to lyse erythrocytes, and to elicit the production of reactive oxygen species (ROS) with human polymorphonuclear leukocytes (PMN) or bovine alveolar macrophages (AM); their behavior was compared with that of asbestos fibers obtained from the Union International Contra Cancer (UICC) as reference standards, as well as with kaolinite and illite, main members of the clay mineral family. Since in short-term in vitro tests the biological activity of mineral particles seems especially related to the active sites on their surface, we first measured the specific surface area of each mineral. Sepiolite was unreactive in two of the three tests we used (complement activation and ROS production) and able to lyse a minimal percentage of red blood cells. Vermiculite was shown to be incapable of activating complement, to have a moderate hemolytic activity and a high ability to elicite ROS production, although lower than that of chrysotile. Sepiolite, therefore, might be of more interest than vermiculite, given the low level of biological effects detected during the tests used to compare both clay minerals with asbestos fibres. The ROS production does not seem to require phagocytosis. A high ROS production was observed with kaolinite: this result casts doubt on the ability of pathogenic mineral dusts in vitro to induce a greater release of ROS than nonpathogenic mineral dusts.
Wollastonite fibers were tested in vitro for their ability to produce reactive oxygen species (ROS) with two different systems: a cell-free reactive mixture containing deoxyribose and a polymorphonuclear leukocyte suspension. After adding the fibers, we measured the thiobarbituric acid-reactive substances produced by deoxyribose degradation and luminol-enhanced chemiluminescence, respectively. Compared with asbestos, wollastonite fibers produced higher ROS levels both in the PMN suspensions and in the cell-free reactive mixtures. A large amount of these ROS were not hydroxyl radicals. Indeed we obtained remarkable differences in ROS generation between unground and ground wollastonite fibers and negative results with fibers modified with ferric chloride and dithionite. In addition, ROS generation was partially inhibited (by 46-54%) in the reactions performed in the presence of 1,3-dimethyl-2-thiourea (DMTU), a strong hydroxyl radical scavenger. Wollastonite fibers were also analyzed for their ability to lyse erythrocytes and activate complement. Hemolytic potency was about twice that of chrysotile and half that of crocidolite. The levels of complement activation (via the alternate pathway) were about four-fifths of those measured in zymosan-activated plasma (a typical stimulus used to activate the alternate pathway), equal to those obtained with crocidolite, and two-thirds of those found with chrysotile. The addition of DMTU markedly reduced both these activities. Since asbestos fiber toxicity is mainly due to hydroxyl radical generation, our results indicate that wollastonite fibers are probably less toxic than asbestos fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.