Research has shown differences in subcortical brain volumes between participants with schizophrenia and healthy controls. However, none of these differences have been found to associate with schizophrenia polygenic risk. Here, in a large sample (n = 14,701) of unaffected participants from the UK Biobank, we test whether schizophrenia polygenic risk scores (PRS) limited to specific gene-sets predict subcortical brain volumes. We compare associations with schizophrenia PRS at the whole genome level (‘genomic’, including all SNPs associated with the disorder at a p-value threshold < 0.05) with ‘genic’ PRS (based on SNPs in the vicinity of known genes), ‘intergenic’ PRS (based on the remaining SNPs), and genic PRS limited to SNPs within 7 gene-sets previously found to be enriched for genetic association with schizophrenia (‘abnormal behaviour,’ ‘abnormal long-term potentiation,’ ‘abnormal nervous system electrophysiology,’ ‘FMRP targets,’ ‘5HT2C channels,’ ‘CaV2 channels’ and ‘loss-of-function intolerant genes’). We observe a negative association between the ‘abnormal behaviour’ gene-set PRS and volume of the right thalamus that survived correction for multiple testing (ß = −0.031, pFDR = 0.005) and was robust to different schizophrenia PRS p-value thresholds. In contrast, the only association with genomic PRS surviving correction for multiple testing was for right pallidum, which was observed using a schizophrenia PRS p-value threshold < 0.01 (ß = −0.032, p = 0.0003, pFDR = 0.02), but not when using other PRS P-value thresholds. We conclude that schizophrenia PRS limited to functional gene sets may provide a better means of capturing differences in subcortical brain volume than whole genome PRS approaches.
and the Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances (STRATA) Consortium and the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC) IMPORTANCE About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts.OBJECTIVE To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples.DESIGN, SETTING, AND PARTICIPANTS Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]).MAIN OUTCOMES AND MEASURES GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. RESULTSThe study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r 2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r 2 = 1.09%; P = .04). CONCLUSIONS AND RELEVANCEIn this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patie...
Up to one-third of those with schizophrenia fail to respond to standard antipsychotics and are considered to have treatment-resistant schizophrenia, a condition for which clozapine is the only evidence-based medication. While up to 60% of treated individuals obtain therapeutic benefits from clozapine, it is currently underprescribed worldwide, partly because of concerns related to its broad adverse effect profile. In particular, the potential effects of clozapine on the immune system have gained relevance after a recent study showed that drug plasma concentrations were inversely correlated with neutrophil counts in individuals routinely undergoing treatment. Seeking to investigate this relationship in more detail, we extracted metabolic, immune, and genetic data from a UK cohort of long-term clozapine users linked to a clozapine monitoring service, CLOZUK2 (N = 208). Whilst a correlation analysis was compatible with the original results, a multiple linear regression accounting for dose and other confounding factors additionally allowed us to estimate the decrease in absolute neutrophil counts to approximately 141 cells/mm3 for every 0.1 mg/L increase in clozapine concentration. However, this association was attenuated after controlling for the metabolic ratio between clozapine and its main metabolite, norclozapine, which was itself negatively associated with neutrophil concentrations. Further analyses revealed that these relationships are likely moderated by genetic factors, as three pharmacogenomic SNPs previously associated to norclozapine plasma concentrations and the metabolic ratio (rs61750900, rs2011425 and rs1126545) were shown to be independently associated with a variation in neutrophil counts of about 400 cells/mm3 per effect allele. Such results are compatible with an effect of norclozapine, but not necessarily clozapine, on immune cell counts, and highlight the need for further investigations into the potential role of genetic determinants of clozapine pharmacokinetics in the occurrence of adverse effects during treatment.
BACKGROUND: Treatment-resistant schizophrenia (TRS) affects ~30% of individuals with the disorder. Clozapine is the medication of choice in TRS but optimizing administration and dose titration are complex. The identification of predictive factors that influence clozapine prescription and response, including genetics, is of clinical interest in a precision psychiatry framework. We aimed to determine if a polygenic risk score (PRS) for schizophrenia is associated with the highest drug dose an individual received during clozapine treatment. METHODS: We used generalized linear regression models accounting for demographic, pharmacological, and clinical covariates to determine the relationship between PRS and highest daily dose of clozapine. We used two independent multi-ancestry samples of individuals from the UK from a clozapine monitoring system, CLOZUK2 (N= 3133) and CLOZUK3 (N= 909). Schizophrenia PRS were calculated using the latest available GWAS summary statistics from the Psychiatric Genomics Consortium. In a secondary analysis of the two merged cohorts, logistic regression models were used to estimate the relationship between schizophrenia PRS and clozapine doses classified as low, standard, or high (>600 mg/day). RESULTS: After controlling for relevant available covariates, schizophrenia PRS were correlated with the highest clozapine dose ever prescribed, in both CLOZUK2 (β= 12.217, s.e= 3.776, P= 0.001) and CLOZUK3 (β= 12.730, s.e= 5.987, P= 0.034). In the secondary analysis, the schizophrenia PRS was specifically associated with taking a clozapine dose greater than 600 mg/day (OR= 1.279, P= 0.006). CONCLUSIONS: Schizophrenia PRS is associated with the highest clozapine dose ever prescribed in two independent multi-ancestry samples from the UK, suggesting that the genetic liability to schizophrenia might index factors associated with therapeutic decisions in TRS cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.