BACKGROUND AND PURPOSETreatment of organophosphate poisoning with pralidoxime needs to be improved. Here we have studied the pharmacokinetics of pralidoxime after its intramuscular injection alone or in combination with avizafone and atropine using an auto-injector device.
EXPERIMENTAL APPROACHThe study was conducted in an open, randomized, single-dose, two-way, cross-over design. At each period, each subject received either intramuscular injections of pralidoxime (700 mg), or two injections of the combination: pralidoxime (350 mg), atropine (2 mg), avizafone (20 mg). Pralidoxime concentrations were quantified using a validated LC/MS-MS method. Two approaches were used to analyse these data: (i) a non-compartmental approach; and (ii) a compartmental modelling approach.
KEY RESULTSThe injection of pralidoxime combination with atropine and avizafone provided a higher pralidoxime maximal concentration than that obtained after the injection of pralidoxime alone (out of bioequivalence range), while pralidoxime AUC values were equivalent. Pralidoxime concentrations reached their maximal value earlier after the injection of the combination. According to Akaike and to goodness of fit criteria, the best model describing the pharmacokinetics of pralidoxime was a two-compartment with a zero-order absorption model. When avizafone and atropine were injected with pralidoxime, the best model describing pralidoxime pharmacokinetics becomes a two-compartment with a first-order absorption model.
CONCLUSIONS AND IMPLICATIONSThe two approaches, non-compartmental and compartmental, showed that the administration of avizafone and atropine with pralidoxime results in a faster absorption into the general circulation and higher maximal concentrations, compared with the administration of pralidoxime alone.
After a radiological accident, review of national and international recommendations for the major countermeasures (stable iodine, Prussian Blue, and diethylenetriaminepentaacetic acid [DTPA]) showed that discrepancies in treatment protocols and open questions remain: How to proceed in case of repeated release of radioiodines? Which dosage for Prussian Blue? For which radionuclides is DTPA really effective? This paper brings elements to answer these questions.
Background and purpose:The aim of this study was to assess the relative bioavailability of diazepam after administration of diazepam itself or as a water-soluble prodrug, avizafone, in humans. Experimental approach: The study was conducted in an open, randomized, single-dose, three-way, cross-over design. Each subject received intramuscular injections of avizafone (20 mg), diazepam (11.3 mg) or avizafone (20 mg) combined with atropine (2 mg) and pralidoxime (350 mg) using a bi-compartmental auto-injector (AIBC). Plasma concentrations of diazepam were quantified using a validated LC/MS-MS assay, and were analysed by both a non-compartmental approach and by compartmental modelling. Key results: The maximum concentration (Cmax) of diazepam after avizafone injection was higher than that obtained after injection of diazepam itself (231 vs. 148 ng·mL -1 ), while area under the curve (AUC) values were equal. Diazepam concentrations reached their maximal value faster after injection of avizafone. Injection of avizafone with atropine-pralidoxime (AIBC) had no effect on diazepam Cmax and AUC, but the time to Cmax was increased, relative to avizafone injected alone. According to the Akaike criterion, the pharmacokinetics of diazepam after injection as a prodrug was best described as a twocompartment with zero-order absorption model. When atropine and pralidoxime were injected with avizafone, the best pharmacokinetic model was a two-compartment with a first-order absorption model.
Conclusion and implications:Diazepam had a faster entry to the general circulation and achieved higher Cmax after injection of prodrug than after the parent drug. Administration of avizafone in combination with atropine and pralidoxime by AIBC had no significant effect on diazepam AUC and Cmax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.