Following an iterative oxime ligation procedure, cyclopeptide (R) and lysine-based dendron (D) were combined in all possible arrangements and successively functionalized with α-fucose and β-fucose to provide a new series of hexadecavalent glycosylated scaffolds (i.e., scaffolds RD16, RR16, DR16, and DD16). These compounds and smaller analogs (tetra- and hexavalent scaffolds R4 and R6) were used to evaluate the influence of the ligand valency and architecture, and of the anomer configuration in the binding to the αFuc-specific lectin LecB from Pseudomonas aeruginosa . Competitive enzyme-linked lectin assays (ELLA) revealed that only the RD16 architecture displaying αFuc (9A) reaches strong binding improvement (IC50 of 0.6 nM) over αMeFuc, and increases the α-selectivity of LecB. Dissociation constant of 28 nM was measured by isothermal titration micorcalorimetry (ITC) for 9A, which represents the highest affinity ligand ever reported for LecB. ITC and molecular modeling suggested that the high affinity observed might be due to an aggregative chelate binding involving four sugar head groups and two lectins. Interestingly, unprecedented binding effects were observed with β-fucosylated conjugates, albeit being less active than the corresponding ligands of the αFuc series. In particular, the more flexible lysine-based dendritic structures (15B and 18B) showed a slight inhibitory enhancement in comparison with those having cyclopeptide core.
Synthetic glycoclusters and their related biological applications have stimulated increasing interest over the last decade. As a prerequisite to discovering active and selective therapeuticals, the development of multivalent glycoconjugates with diverse topologies is faced with inherent synthetic and structural characterisation difficulties. Here we describe a new series of molecularly-defined glycoclusters that were synthesized in a controlled manner using a robust and versatile divergent protocol. Starting from a Regioselectively Addressable Functionalized Template (RAFT) carrier, either a polylysine dendritic framework or a second RAFT, then 16 copies of βGal, αMan, βLac or cancer-related Thomsen-Freidenreich (αTF) antigen were successively conjugated within the same molecule using oxime chemistry. We thus obtained a new generation of dendri-RAFTs glycoclusters with high glycosidic density and variable spatial organizations. These compounds displaying 16 endgroups were unambiguously characterized by NMR spectroscopy and mass spectrometry. Further biological assays between a model lectin from Canavalia ensiformis (ConA) and mannosylated glycoclusters revealed a higher inhibition potency than the tetravalent counterpart, in particular for the hexadecavalent polylysine skeleton. Together with the efficiency of the synthetic and characterisation processes, this preliminary biological study provided clear evidence of promising properties that make the second generation of cyclopeptide-based glycoclusters attractive for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.