Background The increase in detections of Plasmodium vivax infection in Duffy-negative individuals in Africa has challenged the dogma establishing the unique P. vivax Duffy Binding Protein-Duffy antigen receptor for chemokines (PvDBP-DARC) pathway used by P. vivax merozoites to invade reticulocytes. Information on the impact of Duffy antigen polymorphisms on the epidemiology of P. vivax malaria remains elusive. The objective of this study was to determine the distribution of asexual parasitaemia of P. vivax according to the Duffy antigen polymorphisms in Ethiopia. Methods DNA was extracted from dried blood spots (DBS) collected from prospectively recruited 138 P. vivax-infected patients from health centres. The identification and estimation of P. vivax asexual parasitaemia were performed by microscopic examination and quantitative real-time polymerase chain reaction (PCR). Duffy genotyping was conducted by DNA sequencing in a total of 138 P.vivax infected samples. Results The proportion of Duffy-negatives (FY*BES/FY*BES) in P. vivax infected patients was 2.9% (4/138). Duffy genotype FY*B/FY*BES (48.6%) was the most common, followed by FY*A/FY*BES genotype (25.4%). In one patient, the FY*02 W.01/FY*02 N.01 genotype conferring a weak expression of the Fyb antigen was observed. All P.vivax infected Duffy-negative patients showed low asexual parasitaemia (≤ 110 parasites/µL). The median P. vivax parasitaemia in Duffy-negative patients (53 parasites/µL) was significantly lower than those found in homozygous and heterozygous individuals (P < 0.0001). Conclusion Plasmodium vivax in Duffy-negative patients shows invariably low asexual parasitaemia. This finding suggests that the pathway used by P. vivax to invade Duffy-negative reticulocytes is much less efficient than that used in Duffy-positives. Moreover, the low asexual parasitaemia observed in Duffy-negative individuals could constitute an ‘undetected silent reservoir', thus likely delaying the elimination of vivax malaria in Ethiopia.
Background The interaction between the Plasmodium vivax Duffy-binding protein and the corresponding Duffy Antigen Receptor for Chemokines (DARC) is primarily responsible for the invasion of reticulocytes by P. vivax. The Duffy-negative host phenotype, highly prevalent in sub-Saharan Africa, is caused by a single point mutation in the GATA-1 transcription factor binding site of the DARC gene promoter. The aim of this study was to assess the Duffy status of patients with P. vivax infection from different study sites in Ethiopia. Methods A cross-sectional study was conducted from February 2021 to September 2022 at five varying eco-epidemiological malaria endemic sites in Ethiopia. Outpatients who were diagnosed with P. vivax infection (pure and mixed P. vivax/P. falciparum) by microscopy and Rapid Diagnostic Test (RDT) were subjected to PCR genotyping at the DARC promoter. The associations between P. vivax infection, host genotypes and other factors were evaluated. Result In total, 361 patients with P. vivax infection were included in the study. Patients with pure P. vivax infections accounted for 89.8% (324/361), while the remaining 10.2% (37/361) had mixed P. vivax/P. falciparum infections. About 95.6% (345/361) of the participants were Duffy-positives (21.2% homozygous and 78.8%, heterozygous) and 4.4% (16/361) were Duffy-negatives. The mean asexual parasite density in homozygous and heterozygous Duffy-positives was 12,165 p/μl (IQR25-75: 1,640–24,234 p/μl) and11,655 p/μl (IQR25-75: 1,676–14,065 p/μl), respectively, significantly higher than that in Duffy-negatives (1,227p/μl; IQR25-75: 539–1,732p/μl). Conclusion This study confirms that Duffy-negativity does not provide complete protection against P. vivax infection. The development of P. vivax-specific elimination strategies, including alternative antimalarial vaccines should be facilitated by a better understanding of the epidemiological landscape of vivax malaria in Africa. More importantly, low parasitemia associated with P. vivax infections in Duffy-negative patients may represent hidden reservoirs of transmission in Ethiopia.
de revue Plasmodium vivax blood stage invasion pathways: Contribution of omics technologies in deciphering molecular and cellular mechanisms Voies d'invasion de Plasmodium vivax au stade intra-érythrocytaire : Contribution des technologies dites « omiques » au décryptage des mécanismes moléculaires et cellulaires
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.