The present study compares the optimization using Artificial Neural Networks (ANN) and Adaptive Network-based Fuzzy Inference System (ANFIS) in the sugarcane bagasse delignification process using Alkaline Hydrogen Peroxide (AHP). Two variables were assessed experimentally: temperature (25-45 °C) and hydrogen peroxide concentration (1.5-7.5%(w/v)). The Klason Method was used to measure the amount of insoluble lignin, the High Performance Liquid Chromatography (HPLC) was used to determine the glucose and xylose concentrations and the Fourier Transform Infrared Spectroscopy (FT-IR) was applied to identify oxidized lignin structure in the samples. The analytical results were used for training and testing of ANN and ANFIS models. The statistical quality of the models was significant due to the low values of the errors indices (RMSE) and determination coefficient R between experimental and calculated values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.