Volatile organic compounds (VOCs), representing a wide range of products mainly generated by industrial activity, are involved in air pollution. This study deals with a new biological treatment process of gaseous effluent combining a gas/liquid contactor called an "aero-ejector" and a membrane bioreactor. Combining these two innovative technologies enables a high elimination efficiency to be reached. We first focus on transfer phenomena characterization in a pilot installation on a laboratory scale, using a gaseous effluent polluted with a low ethanol concentration (7.1 x 10(-3) kg.m(-3)). These experiments demonstrated the good transfer performances since 90% of the ethanol was absorbed in the liquid phase in one step. After this physical characterization, the biological aspect of the system was studied using the yeast Candida utilis as microorganism. During the experiment, no ethanol was measured in the fermentation broth nor in the outlet gas, confirming the efficiency of ethanol elimination by C. utilis. The experimental procedure emerging from the present study strongly validates the suitability of this process for ethanol removal from air.
A membrane bioreactor (MBR), an association of a bioreactor with a crossflow filtration unit, enables continuous processes with total cell retention within the reactor to be realized. Provided that high dilution rates can be applied and that inhibition processes are avoided, very high biomass concentrations can be reached, thereby improving the volumetric productivities. These membrane bioreactors have been successfully applied to various microbial bioconversion, such as alcoholic fermentation, solvents, organic acid production, starters, and wastewater treatment. On the basis of the biological reaction characteristics and bibliographic results, the potentialities and bottlenecks of this methodology are discussed. Depending on the application, it is shown how the performance of the membrane bioreactor can be enhanced by acting either on the biological reaction achievement, by controlling the balance between cell growth and death, or on the dilution rate, by increasing the permeate flux through the filtration unit. This discussion is based on results obtained in specific biological treatments applied to polluted liquid and gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.