Defect detection in industrial production processes is an important and necessary part of quality control. Many defects can occur during the manufacturing process, causing high manufacturing costs. Thus the inspection of screws, which represent an indispensable element of many mechanical components, is a critical process. To reduce manufacturing costs and increase efficiency, a reliable method for inspection is Deep Learning. It can help simplify the process of quality control and increase the velocity and volume of detected defects in screws. This approach uses a CNN model to classify non-defective and defective screws with different types of defects. Instead of manual quality control methods, which can be easily biased, our CNN approach is accurate, cost-efficient, and fast, with an accuracy of over 97 percent. With this approach corresponding to industrial production processes, different defects in screws and non-defective screws can be classified from images according to a real-world industrial inspection scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.