The glycosyltransferase enzymes (Lgts) responsible for the biosynthesis of the lipooligosaccharide‐derived oligosaccharide structures from Moraxella catarrhalis have been investigated. This upper respiratory tract pathogen is responsible for a spectrum of illnesses, including otitis media (middle ear infection) in children, and contributes to exacerbations of chronic obstructive pulmonary disease in elderly patients. To investigate the function of the glycosyltransferase enzymes involved in the biosynthesis of lipooligosaccharide of M. catarrhalis and to gain some insight into the mechanism of serotype specificity for this microorganism, mutant strains of M. catarrhalis were produced. Examination by NMR and MS of the oligosaccharide structures produced by double‐mutant strains (2951lgt1/4Δ and 2951lgt5/4Δ) and a single‐mutant strain (2951lgt2Δ) of the bacterium has allowed us to propose a model for the serotype‐specific expression of lipooligosaccharide in M. catarrhalis. According to this model, the presence/absence of Lgt4 and the Lgt2 allele determines the lipooligosaccharide structure produced by a strain. Furthermore, it is concluded that Lgt4 functions as an N‐acetylglucosylamine transferase responsible for the addition of an α‐d‐GlcNAc (1→2) glycosidic linkage to the (1→4) branch, and also that there is competition between the glycosyltransferases Lgt1 and Lgt4. That is, in the presence of an active Lgt4, GlcNAc is preferentially added to the (1→4) chain of the growing oligosaccharide, instead of Glc. In serotype B strains, which lack Lgt4, Lgt1 adds a Glc at this position. This implies that active Lgt4 has a much higher affinity/specificity for the β‐(1→4)‐linked Glc on the (1→4) branch than does Lgt1.
Moraxella bovis is a Gram-negative gammaproteobacterium and is one of the causative agents of infectious bovine keratoconjunctivitis. The structure of lipooligosaccharide (LOS) from strain Epp63 was recently elucidated. In the present study a genetic locus of seven encoding genes with high similarity to glycosyltransferases has been identified. Mutation of these putative glycosyltransferase genes resulted in M. bovis mutant bacteria that expressed truncated LOS structures. The structures of the oligosaccharide (OS) expressed by the mutant strains were elucidated and demonstrated the role of the glycosyltransferase enzymes in the LOS biosynthesis of M. bovis. The glycosyltransferase genes designated lgt1, lgt3, and lgt6 are highly similar to the genes in the related bacterium M. catarrhalis. In addition, there are syntenic similarities with the corresponding LOS biosynthesis locus in M. catarrhalis and other members of Moraxellaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.