Melandrium album (Silene alba) is a dioecious plant with heteromorphic sex chromosomes (XY system). Sexual dimorphism is a result of developmental blocks in male or female reproductive organ formation within young bipotential flower buds. Progress in understanding the genetic and molecular mechanisms controlling sex determination in this species relies on a detailed description of developmental timing in the two sexes, with emphasis on those early stages during which sexual dimorphism is established. We used a combination of histological and scanning electron microscopy analysis to refine the comparative study and description of the staging of male compared to female flower development. We show that (1) female dimorphism results from modifications in flower meristem organisation, namely a sudden arrest of cell divisions in whorl 4 of male flowers at the time when meristem partitioning is achieved between whorls 3 and 4, and (2) male dimorphism is part of the stamen differentiation process corresponding to stamen arrest at the early sporogenous stage in female flowers. Thus, Melandrium is a natural double "mutant" that is affected in very early and distinct processes of reproductive organ differentiation. Our results are used to discuss the most likely nature of the specific functions controlling sexual dimorphism in Melandrium.& k w d : Key words Dioecious plant · Melandrium album · Development · Sex determination · Organ differentiation& b d y :
The developmental pathway of somatic embryogenesis in Norway spruce involves proliferation of proembryogenic masses (PEMs), PEM-to-somatic embryo transition and further development of the somatic embryos. It has previously been shown that extracellular signal molecules, including arabinogalactan proteins, lipo-chitooligosaccharides and chitinases, regulate somatic embryogenesis. The Chia4-Pa1 gene from Norway spruce is described here. The Chia4-Pa1 encodes a typical basic class IV chitinase, although the intron-exon organization of this gymnosperm chitinase is different from that in angiosperm class IV chitinases. The Chia4-Pa1 belongs to a small gene family with highly similar members, and the expression pattern of Chia4-Pa1 cannot be distinguished from that of other Chia4-Pa members. Upon withdrawal of plant growth regulators, i.e. during a treatment that stimulates PEM-to-somatic embryo transition and massive programmed cell death, a significant increase in transcription and translation of Chia4-Pa genes takes place. The expression pattern analysis revealed that Chia4-Pa genes are expressed in a subpopulation of proliferating cells and at the base of the somatic embryo. Furthermore, in seeds, Chia4-Pa genes are expressed in the megagametophyte in the single cell-layered zone surrounding the corrosion cavity. Taken together these results suggest that the Chia4-Pa expressing cells have a megagametophyte signalling function and that CHIA4-Pa stimulates programmed cell death and promotes PEM-to-somatic embryo transition.
SummaryHomeotic conversions of anthers were found in cytoplasmic male sterile (CMS) plants of Brassica napus derived from somatic hybrids of B. napus and Arabidopsis thaliana. CMS line flowers displayed petals reduced in size and width and stamens replaced by carpelloid structures. In order to investigate when these developmental aberrations appeared, flower development was analysed histologically, ultrastructurally and molecularly. Disorganized cell divisions were detected in the floral meristems of the CMS lines at stage 4. As CMS is associated with mitochondrial aberrations, ultrastructural analysis of the mitochondria in the floral meristems was performed. Two mitochondrial populations were found in the CMS lines. One type had disrupted cristae, while the other resembled mitochondria typical of B. napus. Furthermore, expression patterns of genes expressed in particular floral whorls were determined. In spite of the aberrant development of the third whorl organs, BnAP3 was expressed as in B. napus during the first six stages of development. However, the levels of BnPI were reduced. At later developmental stages, the expression of both BnAP3 and BnPI was strongly reduced. Interestingly the expression levels of genes responsible for AP3 and PI activation such as LFY, UFO and ASK1 were higher in the CMS lines, which indicates that activation of B-genes in the CMS lines does not occur as in B. napus. Disrupted and dysfunctional mitochondria seem to be one of the first aberrations manifested in CMS which result in a retrograde influence of the expression levels of genes responsible for the second and third whorl organ differentiation.
SummaryFlowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of¯ower organ primordia and establishment of boundaries between the different zones in the¯oral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and¯oral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the¯oral organs of whorls 2, 3 and 4 appears to be caused by de®cient¯oral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the¯oral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modi®ed mitochondria. The putative causes of reduced cell number in the¯oral meristem and the consequences for¯oral development are discussed.
SummaryThe dioecious white campion (Silene latifolia) has been chosen as a working model for sexual development. In this species, sexual dimorphism is achieved through two distinct developmental blocks: inhibition of carpel development in male flowers, and early arrest of anther differentiation in female flowers. The combined advantages of the dioecious system and the availability of a sexual mutant lacking both male and female reproductive organs have been exploited in a molecular subtraction approach using male and asexual flower buds. This resulted in the cloning of 22 cDNA clones expressed in stamens at distinct stages of development. Fourteen of these clones corresponded to genes whose expression was detected in pre-meiotic stamens, a stage of development for which very little information is presently available. Furthermore, the absence of similarities with database sequences for ten clones suggests that they represent novel genes. Functional analysis of each clone will enable their positioning within the reproductive organ developmental pathway(s). In parallel, these clones are being exploited as developmental markers of early differentiation within the flower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.