YB-1 is a multifunctional protein involved in the regulation of transcription, translation, mRNA splicing and probably DNA repair. It contains a conserved cold shock domain and it binds strongly to inverted CCAAT box of different promoters. In this study, we have found that puri®ed YB-1 oligomerizes readily in solutions to form trimers, hexamers and oligomers of 12 molecules. The presence of ATP changed the conformation of YB-1 in such a way that only dimers were detected by gel ®ltration analyses. Puri®ed YB-1 can separate different DNA duplexes containing blunt ends, 5¢ or 3¢ recessed ends, or forked structures. This strand separation activity is increased on cisplatin-modi®ed DNA or with duplex molecules containing mismatches. In addition to its exonuclease activity, YB-1 exhibits endonucleolytic activities in vitro. Finally, YB-1 af®nity chromatography experiments have indicated that in addition to prespliceosome factors like nucleolin and ALY, YB-1 binds the DNA repair proteins MSH2, DNA polymerase d, Ku80 and WRN proteins in vitro. Furthermore, immuno¯uorescence studies have shown that YB-1 re-localizes from the cytoplasm to nuclear areas containing either Ku80 or MSH2 proteins in human 293 embryonic kidney cells. These results suggest that YB-1 is involved in base excision and mismatch repair pathways.
Werner syndrome is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for Werner syndrome encodes a DNA helicase/exonuclease protein. Participation in a replication complex is among the several functions postulated for the WRN protein. The poly(ADP-ribose) polymerase-1 (PARP-1) enzyme, which is known to bind to DNA strand breaks, is also associated with the DNA replication complex. To determine whether Wrn and PARP-1 enzymes act in concert during cell growth, mice with a mutation in the helicase domain of the Wrn gene (Wrn(Deltahel/Deltahel) mice) were crossed to PARP-1-null mice. Both Wrn(Deltahel/Deltahel) and PARP-1-null/Wrn(Deltahel/Deltahel) cohorts developed more neoplasms than wild-type animals. The tumor spectrum was the same between PARP-1-null/Wrn(Deltahel/Deltahel) mice and Wrn mutants. However, PARP-1-null/Wrn(Deltahel/Deltahel) mice developed neoplasms at a younger age. Mouse embryonic fibroblasts derived from such PARP-1-null/Wrn(Deltahel/Deltahel) mice stop dividing abruptly unlike Wrn(Deltahel/Deltahel) or PARP-1-null cells. PARP-1-null/Wrn(Deltahel/Deltahel) fibroblasts were distinguished by an increased frequency of chromatid breaks, complex chromosomal rearrangements, and fragmentation. Finally, experiments have indicated that the PARP-1 enzyme co-immunoprecipitates with the WRN protein in human 293 embryonic kidney cells. These results suggest that Wrn and PARP-1 enzymes may be part of a complex involved in the processing of DNA breaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.