Vocal communication develops under social influences that can enhance attention, an important factor in memory formation and perceptual tuning. In songbirds, social conditions can delay sensitive periods of development, overcome learning inhibitions and enable exceptional learning or induce selective learning. However, we do not know how social conditions influence auditory processing in the brain. In the present study, we raised young naive starlings under different social conditions but with the same auditory experience of adult songs, and we compared the effects of these different conditions on the development of the auditory cortex analogue. Several features appeared to be influenced by the social experience, among which the proportion of auditory neuronal sites and the neuronal selectivity. Both physical and social isolation from adult models altered the development of the auditory area in parallel to alterations in vocal development. To our knowledge, this is the first evidence that social deprivation has as much influence on neuronal responsiveness as sensory deprivation.
Lateralization of brain functions is a widespread phenomenon in vertebrates. With the well-known lateralization in the processing of human speech and the parallels that exist between birdsong and language, songbirds are interesting for addressing such questions. In the present study, we investigated the central processing of communicative and artificial sounds in starlings, in an integrative part of the song system: the HVC. Neuronal responses to acoustic stimuli were systematically recorded in both hemispheres while the birds were awake, and then anesthetized, allowing quantitative comparisons of the responses obtained in each situation. The total proportion of responsive sites in the HVC of the left and right hemispheres of all birds revealed a significant predominance of the HVC of the right hemisphere when the birds were awake, whereas a high interindividual variability appeared when the birds were anesthetized. When neuronal responses as a whole were further examined, the responses to each type of stimulus appeared to be nonrandomly distributed over the different situations, and some specialization may appear. The results suggest a complex and state-dependent hemispheric specialization toward behaviorally relevant classes of stimuli. In awake birds, the HVC of the left hemisphere may be more involved in the processing of songs that are used in individual recognition at distance, whereas the HVC of the right hemisphere may deal with long and complex sequences of a song that is involved in short-distance communication, especially between males and females. With birds under anesthesia, this pattern is strongly modified.
Songbirds are an excellent model for investigating the perception of learned complex acoustic communication signals. Male European starlings (Sturnus vulgaris) sing throughout the year distinct types of song that bear either social or individual information. Although the relative importance of social and individual information changes seasonally, evidence of functional seasonal changes in neural response to these songs remains elusive. We thus decided to use in vivo functional magnetic resonance imaging (fMRI) to examine auditory responses of male starlings that were exposed to songs that convey different levels of information (species-specific and group identity or individual identity), both during (when mate recognition is particularly important) and outside the breeding season (when group recognition is particularly important). We report three main findings: (1) the auditory area caudomedial nidopallium (NCM), an auditory region that is analogous to the mammalian auditory cortex, is clearly involved in the processing/categorization of conspecific songs; (2) season-related change in differential song processing is limited to a caudal part of NCM; in the more rostral parts, songs bearing individual information induce higher BOLD responses than songs bearing species and group information, regardless of the season; (3) the differentiation between songs bearing species and group information and songs bearing individual information seems to be biased toward the right hemisphere. This study provides evidence that auditory processing of behaviorally-relevant (conspecific) communication signals changes seasonally, even when the spectro-temporal properties of these signals do not change.
WOS:000239905800011International audienceAlong with human speech and language processing, birdsong has been one of the best-characterized model systems for understanding the relationship of lateralization of brain function to behavior. Lateralization of song production has been extensively characterized, and lateralization of song perception has begun to be studied. Here we have begun to examine whether behavior and brain function are lateralized in relation to communicative aspects of singing, as well. In order to monitor central brain function, we assayed the levels of several activity dependent immediate early genes after directed courtship singing. Consistent with a lateralization of visual processing during communication, there were higher levels of expression of both egr-1 and c-fos in the left optic tectum after directed singing. Because input from the eyes to the brain is almost completely contralateral in birds, these results suggest that visual input from the right eye should be favored during normal singing to females. Consistent with this, we further found that males sang more when they could use only their right eye compared to when they could use only their left eye. Normal levels of singing, though, required free use of both eyes to view the female. These results suggest that there is a preference for visual processing by the right eye and left brain hemisphere during courtship singing. This may reflect a proposed specialization of the avian left hemisphere in sustaining attention on stimuli toward which a motor response is planned. (c) 2006 Wiley Periodicals, Inc
Although evidence exists for a lateralization of song production, few studies have focused on the perceptual aspect of lateralization in songbirds. In the present study, the authors recorded neuronal responses to a variety of species-specific and artificial, nonspecific stimuli in both hemispheres of awake and anesthetized male starlings (Sturnus vulgaris). Recordings were made in the primary auditory area of the songbird brain, the Field L complex. The right hemisphere exhibited significantly more responsive units than the left hemisphere in awake birds, and this difference was significantly reduced in anesthetized birds. Furthermore, clear hemispheric specialization toward categories of behaviorally relevant stimuli and precise parameters of these stimuli were found. The main auditory area of the starling's brain thus appears to show some degree of lateralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.