Winter tree pruning is a cultural practice known to modify vegetative growth, which is likely to affect the development of pests. However, it has been poorly addressed as a cultural control method for diminishing the population levels of the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae), in peach [Prunus persica (L.) Batsch (Rosaceae)] orchards. In this study, we conducted a 2‐year, on‐station experiment to evaluate how winter pruning affects peach–M. persicae interactions, by examining tree vegetative growth, aphid population dynamics, and crop yield and fruit quality. We collected data under an insect‐proof shelter on adult peach trees submitted to various levels of pruning and artificially infested with aphids. Our results showed that pruning enhanced shoot growth due to the proportion of growing shoots, which increased exponentially (10–60%), whereas the growth rate of growing shoots was not affected. The degree of infestation of peach trees increased with increasing pruning intensity. This effect was mainly due to the increase of the proportion of growing shoots, on which aphids developed better than on rosettes. In turn, the higher the aphid infestation, the higher the aphid‐induced shoot‐tip damage, leaf curling, and leaf fall that disturbed the growth of growing shoots. However, aphids did not considerably reduce fruit quality at harvest. They did not affect fresh fruit weight, and the refractometric index (indicator of sugar content) was reduced by only 3–4%. The relevance of winter pruning as a cultural method for pest control in orchards conducted under integrated fruit production guidelines is discussed.
Plant nitrogen (N) fertilization is a common cropping practice that is expected to serve as a pest management tool. Its effects on the dynamics of the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) were examined on young peach [Prunus persica (L.) Batsch (Rosaceae)] trees grown under five N treatments, ranging from N shortage to supra‐optimal supply for growth. Aphid population increased over time at the three intermediate N levels. It remained stable at the lowest N level and decreased at the highest N level. Four weeks after the start of infestation, the number of aphids displayed a parabolic response to N level. The relationships between N status and parameters of plant vegetative growth (stem diameter) or biomass allocation (lateral‐total leaf area and root‐shoot ratio) were consistent with responses proposed by models of adaptive plasticity in resource allocation patterns. However, the variation in plant growth predicted aphid population dynamics only partially. Whereas aphid number was positively correlated with plant N status and vegetative growth up to the intermediate N level, it was negatively correlated with plant N status above this level, but not with vegetative growth. The concentrations of primary and secondary (plant defence‐related) metabolites in the plant shoots were modified by N treatments: amino acids (main nutritional resource of aphids) and prunasin increased, whereas chlorogenic acid decreased with increasing N availability. Constitutive changes in plant chemistry in response to N fertilization could not directly explain the reduced aphid performance for the highest N level. Nevertheless, the indirect effect of N on the induction of plant defence compounds by aphid feeding warrants further investigation. The study focuses on the feasibility of handling N fertilization to control M. persicae in orchards, but findings may also be relevant for our understanding of the physiological relationships between the host’s nutritional status and the requirements of the insect.
Ants are a very diverse taxonomic group. They display remarkable social organization that has enabled them to be ubiquitous throughout the world. They make up approximately 10% of the world's animal biomass. Ants provide ecosystem services in agrosystems by playing a major role in plant pollination, soil bioturbation, bioindication, and the regulation of crop-damaging insects. Over recent decades, there have been numerous studies in ant ecology and the focus on tree cropping systems has given added importance to ant ecology knowledge. The only missing point in this knowledge is the reasons underlying difference between the positive and negative effects of ants in tree cropping systems. This review article provides an overview of knowledge of the roles played by ants in orchards as functional elements, and on the potential of Oecophylla weaver ants as biological control agents. It also shows the potential and relevance of using ants as an agro-ecological diagnosis tool in orchards. Lastly, it demonstrates the potential elements which may determine the divergent negative and positive of their effects on cropping systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.