In a little over a decade, the unique chirality of oligonucleotides has allowed the development of a variety of asymmetric synthetic transformations. The concept lies in embedding an achiral transition metal catalyst in a DNA double helix, which provides the necessary chiral microenvironment to selectively form one enantiomer of a given reaction product. The most recent efforts at unveiling new reactivities have been accompanied by the desire to understand the mechanisms by which the chirality is transferred and the influence of the interaction between DNA and the metallic co-factor on the selectivity. By offering a complete overview of the field, this review aims to highlight the intricate correlation between the structure of the chiral bio-inorganic scaffold and its catalytic efficacy.
A high-throughput virtual screening of 45 000 diketopyrrolopyrrole dyes is performed to map their optoelectronic property space and screen for dyes suitable for dye-sensitized proton reduction and dye-sensitized solar-cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.