Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease that causes scarring of the lungs. The disease is associated with the usual interstitial pneumonia pattern, which was not yet fully recapitulated by an animal model. Therefore, the disease is considered ‘human specific’. miRNA-608 is a primate specific miRNA with many potential targets, such CdC42 and Interlukin-6 (IL-6) that were previously implicated in IPF pathology. Objective To test miR-608 expression and its targets in IPF patient samples. Methods RNA was extracted from Formalin fixed paraffin embedded tissue sections (N = 18). miRNA-608 and Cdc42 and IL-6 levels were analyzed by qPCR. Acetylcholinesterase (AChE) is another target of miRNA-608. Its’ rs17228616 allele has a single-nucleotide polymorphism causing weakened miR-608 interaction (C2098A). Thus, DNA was extracted from whole blood samples from 56 subjects with fibrosing interstitial lung disease and this region was sequenced for assessment of rs17228616 allele polymorphism. Results miR-608 is significantly overexpressed in IPF samples in comparison with controls (p < 0.05). Cdc42 and IL-6 levels were lower in the IPF patient samples compared with control samples (p < 0.001 and p < 0.05, respectively). The frequency of the rs17228616 minor A-allele was 17/56 (30.4%) with all patients being heterozygous. This result is significant vs. the published Israeli cohort of healthy individuals, which reported 17% prevalence of this allele in healthy control volunteers (p = 0.01, OR = 2.1, CI 95% [1.19–3.9]). Conclusion miR-608 is overexpressed in IPF patients. While the exact mechanism remains to be discovered, it could potentially promote fibrotic disease.
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease that causes scarring of the lungs. The disease is associated with the Usual Interstitial Pneumonia (UIP) pattern, which was not yet fully recapitulated by an animal model. Therefore, the disease is considered ‘human specific’. miRNA-608 is a primate specific miRNA with many potential targets, such CdC42 and Interlukin-6 (IL-6) that were previously implicated in IPF pathology. Objective: To test miR-608 expression and its targets in IPF patient samples.Methods: RNA was extracted from Formalin fixed paraffin embedded (FFPE) tissue sections (N=18). miRNA-608 expression and Cdc42 and IL-6 levels were analyzed by qPCR. Acetylcholinesterase (AChE) is another target of miRNA-608. Its' rs17228616 allele has a single-nucleotide polymorphism (SNP) causing weakened miR-608 interaction (C2098A). Thus, DNA was extracted from whole blood samples from 56 subjects with fibrosing interstitial lung disease (ILD) and this region was sequenced for assessment of rs17228616 allele polymorphism.Results: MiR-608 is significantly overexpressed in IPF samples, in comparison with controls (p<0.05). Cdc42 and IL-6 levels were lower in the IPF patient samples compared with control samples (p<0.001 and p<0.05, respectively). The frequency of the rs17228616 minor A-allele was 17/56 (30.4%) with all patients being heterozygous. This result is significant vs. the published Israeli cohort of healthy individuals, which reported 17% prevalence of this allele in healthy control volunteers (p=0.01, OR = 2.1, CI 95% [1.19-3.9]).Conclusion: MiR-608 is overexpressed in IPF patients. While the exact mechanism remains to be discovered, it could potentially promote fibrotic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.