Purpose: Loss of intercellular adhesion and increased cell motility promote tumor cell invasion and spreading. In bladder cancer, loss or reduced E-cadherin expression has been associated with poor survival, and aberrant expression of N-cadherin has been associated with the invasive phenotype of bladder carcinoma cells. The purpose of this study was to investigate whether N-cadherin expression was associated with the bladder tumor progression. Experimental Design: E-cadherin and N-cadherin expression was evaluated by immunohistochemistry in 101tumors (pT 1 and pT 2 -T 3 ) and by reverse transcription-PCR analysis and immunohistochemistry in 28 other fresh frozen tumors (pT a , pT 1 , and pT 2 -T 3 ). Results: N-cadherin expression was absent in normal urothelium, appeared in stage pT 1 , and increased in pT 2 -pT 3 tumors. In most cases, increased N-cadherin expression in invasive tumors was associated with loss of E-cadherin expression. Progression-free survival and multivariate analyses revealed that N-cadherin expression is an independent prognostic marker for pT 1 tumor progression. Analysis of the 28 frozen tumors by immunohistochemistry and reverse transcription-PCR showed a good correlation between protein and gene expression in pT 1 and pT 2 -T 3 tumors. Interestingly, in pT a tumors, N-cadherin was not immunodetected, whereas mRNA was present in 50% of cases. Conclusion: Regulatory defects in the N-cadherin promoter, abnormalities at the translational, or protein processing levels could explain the discrepancies between protein and mRNA expression. Most importantly, this study identified N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors. Clearly, N-cadherin acts in an invasive mode in bladder cancer, but whether it has a primary role in urothelial neoplastic progression has yet to be investigated.
The growth of any solid tumor depends on angiogenesis. Vascular endothelial growth factor (VEGF) plays a prominent role in vesical tumor angiogenesis regulation. Previous studies have shown that the peroxisome proliferator-activated receptor ␥ (PPAR␥) was involved in the angiogenesis process. Here, we report for the first time that in two different human bladder cancer cell lines, RT4 (derived from grade I tumor) and T24 (derived from grade III tumor), VEGF (mRNA and protein) is differentially up-regulated by the three PPAR isotypes. Its expression is increased by PPAR␣, , and ␥ in RT4 cells and only by PPAR in T24 cells via a transcriptional activation of the VEGF promoter through an indirect mechanism. This effect is potentiated by an RXR (retinoid-X-receptor), selective retinoid LG10068 providing support for a PPAR agonist-specific action on VEGF expression. While investigating the downstream signaling pathways involved in PPAR agonist-mediated up-regulation of VEGF, we found that only the MEK inhibitor PD98059 reduced PPAR ligand-induced expression of VEGF. These data contribute to a better understanding of the mechanisms by which PPARs regulate VEGF expression. They may lead to a new therapeutic approach to human bladder cancer in which excessive angiogenesis is a negative prognostic factor.
Superficial pT1 bladder tumors are characterized by a high risk of recurrence and progression in grade and stage. Few studies provided evidence that loss of adipocyte-fatty acid binding protein (A-FABP) expression was associated with bladder cancer progression. A-FABP is a lipid binding protein playing a role in intracellular lipid transport and metabolism, as well as in signal transduction. We reported from bladder tumors that decrease of A-FABP transcript level significantly correlated to tumor stage and to histologic grade (p < 0.05). Namely, in poor prognosis high grade pT1 tumors there was a loss of A-FABP expression compared to good prognosis tumors suggesting that re-expression of A-FABP could be a therapeutic approach in early stage bladder cancer to prevent disease progression. We demonstrated for the first time that this marker is upregulated by Peroxisome Proliferator-Activated Receptor (PPAR) a, b and c in T24 cells (derived from an undifferentiated grade III carcinoma) and only by PPARb in RT4 cells (derived from a well differentiated grade I papillary tumor). This effect occurred through a PPAR-dependent transcriptional mechanism without modifying mRNA stability and interestingly required de novo protein synthesis. Data as a whole suggest a prognostic significance of A-FABP in bladder cancer outcome and the potential utility of overexpression of this protein by PPAR agonists open up new perspectives in the treatment of bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.