Underwater target detection is investigated by combining active polarization imaging and optical correlation-based approaches. Experiments were conducted in a glass tank filled with tap water with diluted milk or seawater and containing targets of arbitrary polarimetric responses. We found that target estimation obtained by imaging with two orthogonal polarization states always improves detection performances when correlation is used as detection criterion. This experimentally study illustrates the potential of polarization imaging for underwater target detection and opens interesting perspectives for the development of underwater imaging systems.
We suggest a new type of optimized composite filter, i.e. the asymmetric segmented phase-only filter (ASPOF), for improving the effectiveness of a VanderLugt correlator (VLC) when used for face identification. Basically, it consists in merging several reference images after application of a specific spectral optimization method.After segmentation of the spectral filter plane to several areas, each area is assigned to a single winner reference according to a new optimized criterion. The point of the paper is to show that this method offers a significant performance improvement on standard composite filters for face identification. We first briefly revisit composite filters (adapted, phase-only, inverse, compromise optimal, segmented, minimum average correlation energy, optimal trade-off maximum average correlation, and amplitude modulated phase-only (AMPOF)) which are tools of choice for face recognition based on correlation techniques and compare their performances with those of the ASPOF. We illustrate some of the drawbacks of current filters for several binary and gray scale images identifications. Next, we describe the optimization steps and introduce the ASPOF that can overcome these technical issues to improve the quality and the reliability of the correlation based decision. We derive performance measures, i.e. peak-to-correlation energy values and receiver operating characteristic curves, to confirm consistency of the results. We numerically find that this filter increases the recognition rate and decrease the false alarm rate. The results show that the discrimination of the ASPOF is comparable to that of the AMPOF, but the ASPOF is more robust than the trade-off maximum average correlation height 3 (OT-MACH) against rotation and various types of noise sources. Our method has several features that make it amenable to experimental implementation using a VLC.4
Techniques are widely sought to detect and identify sea mines. This issue is characterized by complicated mine shapes and underwater light propagation dependencies. In a preliminary study we use a preprocessing step for denoising underwater images before applying the algorithm for mine detection. Once a mine is detected, the protocol for identifying it is activated. Among many correlation filters, we have focused our attention on the asymmetric segmented phase-only filter for quantifying the recognition rate because it allows us to significantly increase the number of reference images in the fabrication of this filter. Yet they are not entirely satisfactory in terms of recognition rate and the obtained images revealed to be of low quality. In this report, we propose a way to improve upon this preliminary study by using a single wavelength polarimetric camera in order to denoise the images. This permits us to enhance images and improve depth visibility. We present illustrative results using in situ polarization imaging of a target through a milk-water mixture and demonstrate that our challenging objective of increasing the detection rate and decreasing the false alarm rate has been achieved.
In this paper, we explore the use of optical correlation-based recognition to identify and position underwater man-made objects (e.g. mines). Correlation techniques can be defined as a simple comparison between an observed image (image to recognize) and a reference image; they can be achieved extremely fast. The result of this comparison is a more or less intense correlation peak, depending on the resemblance degree between the observed image and a reference image coming from a database. However, to perform a good correlation decision, we should compare our observed image with a huge database of references, covering all the appearances of objects we search. Introducing all the appearances of objects can influence speed and/or recognition quality. To overcome this limitation, we propose to use composite filter techniques, which allow the fusion of several references and drastically reduce the number of needed comparisons to identify observed images. These recent techniques have not yet been exploited in the underwater context. In addition, they allow for integrating some preprocessing directly in the correlation filter manufacturing step to enhance the visibility of objects. Applying all the preprocessing in one step reduces the processing by avoiding unnecessary Fourier transforms and their inverse operation. We want to obtain filters that are independent from all noises and contrast problems found in underwater videos. To achieve this and to create a database containing all scales and viewpoints, we use as references 3D computer-generated images.
Abstract. An optimized technique, based on the fringe-adjusted joint transform correlator architecture, is proposed and validated for rotation invariant recognition and tracking of a target in an unknown input scene. To enhance the robustness of the proposed technique, we used a three-step optimization. First, we utilized the fringe-adjusted filter (H FAF ) in the Fourier plane, then we added nonlinear processing in the Fourier plane, and, finally, we used a new decision criterion in the correlation plane by considering the correlation peak energy and the highest peaks outside the desired correlation peak. Several tests were conducted to reduce the number of reference images needed for fast tracking, while ensuring robust discrimination and efficient tracking of the desired target. Test results, obtained using the pointing head pose image database, confirm robust performance of the proposed method for face recognition and tracking applications. Thereafter, we also tested the proposed technique for a challenging application such as underwater mine detection and excellent results were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.