Aim:
This study evaluated the chromatic and surface changes on enamel after toothbrushing with whitening and desensitizing toothpaste.
Materials and Methods:
Sixty enamel blocks were prepared, pigmented, and stratified according to initial Knoop microhardness and divided into six groups. The average roughness (Ra) was determined from two readings. After 24 h in artificial saliva, 10,000 cycles of simulated brushing were applied. The Ra was measured after 5000 and 10,000 cycles, and tooth wear was determined. The mean roughness was evaluated, and tooth color was recorded before and after treatment.
Results:
Brushing with dentifrices increased the roughness of enamel in all groups. It was lower for Colgate Sensitive Pro-Relief + Bleaching, Colgate maximum protection anti-caries, and the control group. Greater roughness was observed in dentifrices containing silica. Greater wear was found with Sensodyne bleaching extra fresh and in the control group. The best bleaching effect was found with Colgate Sensitive Pro-Relief + Bleaching. Colgate Sensitive Whitening, Oral-B Pro-Health Whitening, and Sensodyne Whitening Extra Fresh showed major changes on surface roughness.
Conclusion:
The physical characteristics of the minerals of the toothpaste appear to be the major determinant of dental abrasion, not their quantity or whitening capacity, or rather their ability to remove enamel surface stains.
Oxalate-based products are effective against dentine sensitivity and have been studied as an option to improve long-term adhesive bonding strength. Our aim was to evaluate the effect of potassium oxalate on the microtensile bond strength (µTBS) of the dentin/resin interface after 24 h, 1, and 6 years. Dentin on the occlusal surface of 16 human premolars was exposed and etched with 35% phosphoric acid. The teeth were divided into four groups. Two groups received 3% monohydrated potassium oxalate and the following adhesive systems and composites: Adper Scotchbond Multipurpose + FiltekZ350 (3M/ESPE) and Prime & Bond NT + Esthet-X (Dentsply). Two control groups did not receive potassium oxalate. Teeth were cut into sticks and kept in distilled water at 37°C for 24 h, 1, and 6 years. The sticks underwent µTBS testing after storage. ANOVA, Tukey's post hoc test, and paired t test were used to compare storage times (α = 0.05). The fracture mode of the specimens was classified under a stereomicroscope (40×). Morphology of the hybrid layer and the fracture pattern were observed with scanning electronic microscopy (SEM). Mean µTBS was high at 24 h and decreased after 1 and 6 years. After 6 years, the mean µTBS values were similar with no statistically significant difference between the groups (p = .121). SEM images showed proper dentin hybridization. Dentin pretreatment with potassium oxalate did not affect hybrid layer formation, but bond strength decreased over time after 24 h. Therefore, the clinical use of potassium oxalate to increase dentin bond durability is not indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.