Hybrid cavity-antenna systems have been proposed to combine the sub-wavelength light confinement of plasmonic antennas with microcavity quality factors Q. Here, we examine what confinement and Q can be reached in these hybrid systems, and we address their merits for various applications in classical and quantum optics. Specifically, we investigate their applicability for quantum-optical applications at noncryogenic temperatures. To this end we first derive design rules for hybrid resonances from a simple analytical model. These rules are benchmarked against full-wave simulations of hybrids composed of state-of-the-art nanobeam cavities and plasmonic-dimer gap antennas. We find that hybrids can outperform the plasmonic and cavity constituents in terms of Purcell factor, and additionally offer freedom to reach any Q at a similar Purcell factor. We discuss how these metrics are highly advantageous for a high Purcell factor, yet weak-coupling applications, such as bright sources of indistinguishable single photons. The challenges for room-temperature strong coupling, however, are far more daunting: the extremely high dephasing of emitters implies that little benefit can be achieved from trading confinement against a higher Q, as done in hybrids. An attractive alternative could be strong coupling at liquid nitrogen temperature, where emitter dephasing is lower and this trade-off can alleviate the stringent fabrication demands required for antenna strong coupling. For few-emitter strong-coupling, high-speed and low-power coherent or incoherent light sources, particle sensing and vibrational spectroscopy, hybrids provide the unique benefit of very high local optical density of states, tight plasmonic confinement, yet microcavity Q.
We report on a Python toolbox for unbiased statistical analysis of fluorescence intermittency properties of single emitters. Intermittency, that is, step-wise temporal variations in the instantaneous emission intensity and fluorescence decay rate properties, is common to organic fluorophores, II−VI quantum dots, and perovskite quantum dots alike. Unbiased statistical analysis of intermittency switching time distributions, involved levels, and lifetimes are important to avoid interpretation artifacts. This work provides an implementation of Bayesian changepoint analysis and level clustering applicable to time-tagged single-photon detection data of single emitters that can be applied to real experimental data and as a tool to verify the ramifications of hypothesized mechanistic intermittency models. We provide a detailed Monte Carlo analysis to illustrate these statistics tools and to benchmark the extent to which conclusions can be drawn on the photophysics of highly complex systems, such as perovskite quantum dots that switch between a plethora of states instead of just two.
We analyze intermittency in intensity and fluorescence lifetime of CsPbBr 3 perovskite quantum dots by applying unbiased Bayesian inference analysis methods. We apply changepoint analysis (CPA) and a Bayesian state clustering algorithm to determine the timing of switching events and the number of states between which switching occurs in a statistically unbiased manner, which we have benchmarked particularly to apply to highly multistate emitters. We conclude that perovskite quantum dots display a plethora of gray states in which brightness, broadly speaking, correlates inversely with decay rate, confirming the multiple recombination centers model. We leverage the CPA partitioning analysis to examine aging and memory effects. We find that dots tend to return to the bright state before jumping to a dim state and that when choosing a dim state, they tend to explore the entire set of states available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.