In greenhouse experiments, Aychade, a fragrant rice variety, was grown under one level of salt solution (EC of 3800 ± 400 μS·cm(-1)) sufficient to induce salt stress in rice. Timing and duration of salt solution application varied according to the growth stages. 2-Acetyl-1-pyrroline (2AP), a characteristic flavor compound of fragrant rice as well as biogenetically related compounds, proline, and γ-aminobutyric acid (GABA) were quantified. Salt treatments induced 2AP synthesis in the leaves, but the increase was often higher in the vegetative phase. This increase was correlated with proline level but not with that of GABA. Interestingly the grains from all the salt treated plants contained significantly higher levels of 2AP (733-998 μg·kg(-1)) than those from the control (592 μg·kg(-1)). The highest 2AP synthesis occurred when the plants were subjected to salt treatment during whole vegetative or reproductive phases. However in the latter case crop yield decreased significantly.
Volatile compounds of cooked rice from scented (Aychade, Fidji) and nonscented (Ruille) cultivars grown in the Camargue area in France were compared to that of a marketed Asian scented one (Thai) by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). GC-O analyses of the organic extracts resulted in the perception of 40 odorous compounds. Only two compounds, oct-1-en-3-one and 2-acetyl-1-pyrroline, were almost always perceived. Hierarchical cluster analysis showed that most of the difference between rice odors was linked to quantitative differences with only 11 compounds being specific to some of the rice. Sixty compounds were identified and quantified by GC-MS, including a few new odor-active components. Principal component analysis enabled us to differentiate scented cultivars from a nonscented one, and scented rice cultivars from Camargue from a Thai sample. Calculated odor-active values evidenced that the Thai sample odor differed from that of scented Camargue cultivars because of the degradation of lipids and of cinnamic acid compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.