Interferon (IFN) genes are among the earliest transcriptional responses to virus infection of mammalian cells.Although the regulation of the IFNβ gene has been well characterized, the induction of the large family of IFNα genes has remained obscure. We report that the IFNα genes can be divided into two groups: an immediate-early response gene (IFNα4) which is induced rapidly and without the need for ongoing protein synthesis; and a set of genes that display delayed induction, consisting of at least IFNα2, 5, 6 and 8, which are induced more slowly and require cellular protein synthesis. One protein that must be synthesized for induction of the delayed gene set is IFN itself, presumably IFNα4 or IFNβ, which stimulates the Jak-Stat pathway through the IFN receptor, resulting in activation of the transcription factor interferonstimulated gene factor 3 (ISGF3). Among the IFNstimulated genes induced through this positive feedback loop is the IFN regulatory factor (IRF) protein, IRF7. Induction of IRF7 protein in response to IFN and its subsequent activation by phosphorylation in response to virus-specific signals, involving two C-terminal serine residues, are required for induction of the delayed IFNα gene set.
The type I and III interferon (IFN) families consist of cytokines rapidly induced during viral infection that confer antiviral protection on target cells and are critical components of innate immune responses and the transition to effective adaptive immunity. The regulation of their expression involves an intricate and stringently regulated signaling cascade, initiated by recognition most often of viral nucleic acid in cytoplasmic and endosomal compartments and involving a series of protein conformational rearrangements and interactions regulated by helicase action, ubiquitin modification, and protein aggregation, culminating in kinase activation and phosphorylation of critical transcription factors and their regulators. The many IFN subtypes induced by viruses confer amplification, diversification, and cell-type specificity to the host response to infection, providing fertile ground for development of antiviral therapeutics and vaccines.
Histone deacetylase (HDAC) activity, commonly correlated with transcriptional repression, was essential for transcriptional induction of IFN-stimulated genes (ISG). Inhibition of HDAC function led to global impairment of ISG expression, with little effect on basal expression. HDAC function was not required for signal transducer and activator of transcription tyrosine phosphorylation, nuclear translocation, or assembly on chromatin, but it was needed for full activity of the signal transducer and activator of transcription transactivation domain. HDAC function was also required for gene induction driven by the IFN regulatory factor 3 transcription factor activated by virus infection, and it was essential for establishment of an antiviral response against Flaviviridae, Rhabdoviridae, and Picornaviridae. Requirement for HDAC function in transcriptional activation may represent a general mechanism for rapid stimulation of ISG transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.