ABSTRACT. Evidence as to the potential roles of marine ice flows in the dramatic climatological changes which have occurred from the late Pleistocene to the present is reviewed, indicating the need for careful modeling studies to evaluate several crucial hypotheses. A scale analysis of the flow of a marine ice stream coupled to a freely floating ice shelf is presented, in two dimensions and ignoring thermodynamic effects. With these limitations, the most important control of the dynamics of the ice stream is associated with first-order buoyancy effects related to the density contrast bp/ pw between ice and sea-water. It is shown that longitudinal stretching, arising from large gradients in basal sliding velocity, dominates shearing deformation provided the aspect ratio w 2 « bp/ pw' The buoyancy control is established through the necessity of having continuously varying longitudinal strain-rates in the neighborhood of the grounding line.The scale analysis is the basis for derivation of a simplified model of a fast-flowing ice stream coupled to a freely floating ice shelf. The distance in the ice stream upstream from the grounding line over which the above dynamic regime extends is estimated and found to be relatively insensitive to the basal sliding velocity and to the rheological constant of ice. A further potentially important feed-back mechanism between ice stream and ice shelf is associated with buoyancy corrections to the longitudinal deviatoric stress field.
ABSTRACT. Evidence as to the potential roles of marine ice flows in the dramatic climatological changes which have occurred from the late Pleistocene to the present is reviewed, indicating the need for careful modeling studies to evaluate several crucial hypotheses. A scale analysis of the flow of a marine ice stream coupled to a freely floating ice shelf is presented, in two dimensions and ignoring thermodynamic effects. With these limitations, the most important control of the dynamics of the ice stream is associated with first-order buoyancy effects related to the density contrast bp/ pw between ice and sea-water. It is shown that longitudinal stretching, arising from large gradients in basal sliding velocity, dominates shearing deformation provided the aspect ratio w 2 « bp/ pw' The buoyancy control is established through the necessity of having continuously varying longitudinal strain-rates in the neighborhood of the grounding line.The scale analysis is the basis for derivation of a simplified model of a fast-flowing ice stream coupled to a freely floating ice shelf. The distance in the ice stream upstream from the grounding line over which the above dynamic regime extends is estimated and found to be relatively insensitive to the basal sliding velocity and to the rheological constant of ice. A further potentially important feed-back mechanism between ice stream and ice shelf is associated with buoyancy corrections to the longitudinal deviatoric stress field.
A study of antarctic accumulaton. surface temperature and elevation data reveals a strong correlation between the accumulation rate and the surface temperature which, in turn. is almost uniquely determined by the elevation of the ice sheet surface. The latitudinal temperature gradient seems to play a relatively minor rdle. The dependence of the accumulation rate on surface temperature and elevation is, to a very good approximation. linear. Based on our own and Robin's results. we propose two parameterizations of the accumulation rate for use in simple one-dimensional paleoclimatic models.
Asynchronous coupling schemes between ice sheet and atmospheric forcing models are evaluated for use in long-term ice-age simulations. In these schemes the ice sheet and atmospheric forcing are run together for short synchronous periods (T s), alternating with longer asynchronous periods (T A) during which the ice sheet is run with atmospheric information extrapolated from the previous synchronous period(s). Two simple ice-sheet models are used that predict ice thickness as a function of latitude, and the atmosphere is represented by a prescribed pattern of net annual accumulation minus ablation. The pattern is shifted vertically to represent long-term orbital variations, stochastic inter-annual weather variability and ice-sheet albedo feedback. Several asynchronous schemes are evaluated by comparing results with those from fully synchronous runs. The best overall results are obtained using a scheme in which the forcing during each asynchronous period is linearly extrapolated from its means in the previous two synchronous periods. Differences from the synchronous results are caused primarily by poor sampling of the stochastic forcing component, which exaggerates the stochastic ice-sheet fluctuations. We examine how these errors depend on T s and T A, and outline implications for GCM ice-age simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.