We report on the existence and stability of multidimensional bound solitonic states in harmonically trapped scalar Bose-Einstein condensates. Their equilibrium separation, as a measure of the strength of the solitonsoliton or the solitonic vortex-vortex interaction, is provided for varying chemical potential μ. Static bound dark solitons are shown to be dynamically stable in elongated condensates within a range of intermediate (repulsive) interparticle-interaction strength. Beyond this range the snaking instability manifests during the time evolution of the planar solitons and produces the decay into nonstationary vortex states. A subsequent dynamical recurrence of solitons and vortices can be observed at low μ. At equilibrium, the bifurcations of bound dark solitons are bound solitonic vortices. Among them, both two-open and two-ring vortex lines are demonstrated to exist with both counter-and co-rotating steady velocity fields. The latter flow configurations evolve, for high chemical potential, into a stationary three-dimensional (3D)-chain-shaped vortex and a three vortex-antivortex-vortex ring sequence that arrest the otherwise increasing angular or linear momentum respectively. As a feature common to the bifurcated families of vortex states, their excitation spectra present unstable modes with associated oscillatory dynamics. In spite of this, the family of two-open counter-rotating vortices support dynamically stable 3D states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.