Pathological fetal growth is associated with perinatal morbidity and the development of diabetes and cardiovascular disease later in life. Placental nutrient transport is a primary determinant of fetal growth. In human intrauterine growth restriction (IUGR) the activity of key placental amino acid transporters, such as systems A and L, is decreased. However the mechanisms regulating placental nutrient transporters are poorly understood. We tested the hypothesis that the mammalian target of rapamycin (mTOR) signalling pathway regulates amino acid transport in the human placenta and that the activity of the placental mTOR pathway is reduced in IUGR. Using immunohistochemistry and culture of trophoblast cells, we show for the first time that the mTOR protein is expressed in the transporting epithelium of the human placenta. We further demonstrate that placental mTOR regulates activity of the L-amino acid transporter, but not system A or taurine transporters, by determining the mediated uptake of isotope-labelled leucine, methylaminoisobutyric acid and taurine in primary villous fragments after inhibition of mTOR using rapamycin. The protein expression of placental phospho-S6K1 (Thr-389), a measure of the activity of the mTOR signalling pathway, was markedly reduced in placentas obtained from pregnancies complicated by IUGR. These data identify mTOR as an important regulator of placental amino acid transport, and provide a mechanism for the changes in placental leucine transport in IUGR previously demonstrated in humans. We propose that mTOR functions as a placental nutrient sensor, matching fetal growth with maternal nutrient availability by regulating placental nutrient transport.
Intrauterine growth restriction (IUGR) represents an important risk factor for perinatal complications and for adult disease. IUGR is associated with a down-regulation of placental amino acid transporters; however, whether these changes are primary events directly contributing to IUGR or a secondary consequence is unknown. We investigated the time course of changes in placental and fetal growth, placental nutrient transport in vivo and the expression of placental nutrient transporters in pregnant rats subjected to protein malnutrition, a model for IUGR. Pregnant rats were given either a low protein (LP) diet (n = 64) or an isocaloric control diet (n = 66) throughout pregnancy. Maternal insulin, leptin and IGF-I levels decreased, whereas maternal amino acid concentrations increased moderately in response to the LP diet. Fetal and placental weights in the LP group were unaltered compared to control diet at gestational day (GD) 15, 18 and 19 but significantly reduced at GD 21. Placental system A transport activity was reduced at GD 19 and 21 in response to a low protein diet. Placental protein expression of SNAT2 was decreased at GD 21. In conclusion, placental amino acid transport is down-regulated prior to the development of IUGR, suggesting that these placental transport changes are a cause, rather than a consequence, of IUGR. Reduced maternal levels of insulin, leptin and IGF-1 may link maternal protein malnutrition to reduced fetal growth by down-regulation of key placental amino acid transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.