SUMMARY
Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.
Endothelial cell focal adhesion kinase is a key intermediate between c-Src and the regulation of endothelial cell barrier function in the control of tumor metastasis.
Recurrence and spread of ovarian cancer is the 5th leading cause of death for women in the United States. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase located on chromosome 8q24.3 (gene is Ptk2), a site commonly amplified in serous ovarian cancer. Elevated FAK mRNA levels in serous ovarian carcinoma are associated with decreased (logrank P = 0.0007, hazard ratio 1.43) patient overall survival, but how FAK functions in tumor progression remains undefined. We have isolated aggressive ovarian carcinoma cells termed ID8-IP after intraperitoneal (IP) growth of murine ID8 cells in C57Bl6 mice. Upon orthotopic implantation within the periovarian bursa space, ID8-IP cells exhibit greater tumor growth, local and distant metastasis, and elevated numbers of ascites-associated cells compared to parental ID8 cells. ID8-IP cells exhibit enhanced growth under non-adherent conditions with elevated FAK and c-Src tyrosine kinase activation compared to parental ID8 cells. In vitro, the small molecule FAK inhibitor (Pfizer, PF562,271, PF-271) at 0.1 uM selectively prevented anchorage-independent ID8-IP cell growth with the inhibition of FAK tyrosine (Y)397 but not c-Src Y416 phosphorylation. Oral PF-271 administration (30 mg/kg, twice daily) blocked FAK but not c-Src tyrosine phosphorylation in ID8-IP tumors. This was associated with decreased tumor size, prevention of peritoneal metastasis, reduced tumor-associated endothelial cell number, and increased tumor cell-associated apoptosis. FAK knockdown and re-expression assays showed that FAK activity selectively promoted anchorage-independent ID8-IP cell survival. These results support the continued evaluation of FAK inhibitors as a promising clinical treatment for ovarian cancer.
Identification of specific oncogenic gene changes has enabled the modern generation of targeted cancer therapeutics. In high-grade serous ovarian cancer (OV), the bulk of genetic changes is not somatic point mutations, but rather somatic copy-number alterations (SCNAs). The impact of SCNAs on tumour biology remains poorly understood. Here we build haploinsufficiency network analyses to identify which SCNA patterns are most disruptive in OV. Of all KEGG pathways (N=187), autophagy is the most significantly disrupted by coincident gene deletions. Compared with 20 other cancer types, OV is most severely disrupted in autophagy and in compensatory proteostasis pathways. Network analysis prioritizes MAP1LC3B (LC3) and BECN1 as most impactful. Knockdown of LC3 and BECN1 expression confers sensitivity to cells undergoing autophagic stress independent of platinum resistance status. The results support the use of pathway network tools to evaluate how the copy-number landscape of a tumour may guide therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.