Treatment of P4 with in situ generated [Na][SnPh3] leads to the formation of the sodium monophosphide [Na][P(SnPh3)2] and the Zintl salt [Na]3[P7]. The former was isolated in 46% yield as the crystalline salt [Na(benzo-15-crown-5)][P(SnPh3)2] and used to prepare the homoleptic phosphine P(SnPh3)3, isolated in 67% yield, as well as the indium derivative (XL)2InP(SnPh3)2 (XL = S(CH2)2NMe2), isolated in 84% yield, and the gold complex (Ph3P)AuP(SnPh3)2. The compounds [Na(benzo-15-crown-5)][P(SnPh3)2], P(SnPh3)3, (XL)2InP(SnPh3)2, and (Ph3P)AuP(SnPh3)2 were characterized using multinuclear NMR spectroscopy and X-ray crystallography. The bonding in (Ph3P)AuP(SnPh3)2 was dissected using natural bond orbital (NBO) methods, in response to the observation from the X-ray crystal structure that the dative P:→Au bond is slightly shorter than the shared electron-pair P-Au bond. The bonding in (XL)2InP(SnPh3)2 was also interrogated using (31)P and (13)C solid-state NMR and computational methods. Co-product [Na]3[P7] was isolated in 57% yield as the stannyl heptaphosphide P7(SnPh3)3, following salt metathesis with ClSnPh3. Additionally, we report that treatment of P4 with sodium naphthalenide in dimethoxyethane at 22 °C is a convenient and selective method for the independent synthesis of Zintl ion [Na]3[P7]. The latter was isolated as the silylated heptaphosphide P7(SiMe3)3, in 67% yield, or as the stannyl heptaphosphide P7(SnPh3)3 in 65% yield by salt metathesis with ClSiMe3 or ClSnPh3, respectively.
The understanding of redox equilibria as well as the knowledge of the elemental distribution in magmatic melts are of fundamental importance to constrain the genesis of magmas. In particular, the partitioning of trace elements (e.g., Eu) has demonstrated to be a useful tool for estimating the redox conditions in Earth and planetary materials. However, for a more complete comprehension of Eu in silicate melts, information regarding the effects of temperature (T), redox conditions, compositions, and the possible interference of other multivalent elements is still lacking. Here we provide new data on the oxidation states of two commonly coexistent multivalent elements (Eu and Fe) in melts, acquired by “in situ” dispersive X-ray absorption spectroscopy experiments at high temperatures and at different oxygen fugacity conditions. This work, for the first time, shows the possibility to monitor in real-time the behavior and valence variations of two elements under varying environmental conditions (like T and redox state)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.