We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.
The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Immunohistochemical analysis of FOXP3 in primary breast tumors showed that a high number of tumor-infiltrating regulatory T cells (Ti-Treg) within lymphoid infiltrates surrounding the tumor was predictive of relapse and death, in contrast to those present within the tumor bed. + , and CD8 + T cells was documented within lymphoid infiltrates. Altogether, these results show that Treg are selectively recruited within lymphoid infiltrates and activated by mature DC likely through TAA presentation, resulting in the prevention of effector T-cell activation, immune escape, and ultimately tumor progression. This study sheds new light on Treg physiology and validates CCR4/CCL22 and ICOS as therapeutic targets in breast tumors, which represent a major health problem.
While investigating cohorts of unclassified sarcomas by RNA sequencing, we identified 19 cases with inactivation of SMARCA4, which encodes an ATPase subunit of BAF chromatin-remodeling complexes. Clinically, the cases were all strikingly similar, presenting as compressive mediastino-pulmonary masses in 30- to 35-year-old adults with a median survival time of 7 months. To help define the nosological relationships of these tumors, we compared their transcriptomic profiles with those of SMARCA4-mutated small-cell carcinomas of the ovary, hypercalcemic type (SCCOHTs), SMARCB1-inactivated malignant rhabdoid tumors (MRTs) and lung carcinomas (of which 10% display SMARCA4 mutations). Gene profiling analyses demonstrated that these tumors were distinct from lung carcinomas but related to MRTs and SCCOHTs. Transcriptome analyses, further validated by immunohistochemistry, highlighted strong expression of SOX2, a marker that supports the differential diagnosis of these tumors from SMARCA4-deficient lung carcinomas. The prospective recruitment of cases confirmed this new category of 'SMARCA4-deficient thoracic sarcomas' as readily recognizable in clinical practice, providing opportunities to tailor their therapeutic management.
A simple immunopanel can divide breast cancers into biologic subtypes with strong prognostic effects. TAC significantly complements endocrine therapy in patients with luminal B subtype and, in the absence of targeted therapy, is effective in the triple-negative population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.