Biofilm formation protects bacteria from antibiotics. Very little is known about the response of biofilm-dwelling bacteria to antibiotics at the single cell level. Here, we developed a cell-tracking approach to investigate how antibiotics affect structure and dynamics of colonies formed by the human pathogen Neisseria gonorrhoeae. Antibiotics targeting different cellular functions enlarge the cell volumes and modulate within-colony motility. Focusing on azithromycin and ceftriaxone, we identify changes in type 4 pilus (T4P) mediated cell-to-cell attraction as the molecular mechanism for different effects on motility. By using strongly attractive mutant strains, we reveal that the survivability under ceftriaxone treatment depends on motility. Combining our results, we find that sequential treatment with azithromycin and ceftriaxone is synergistic. Taken together, we demonstrate that antibiotics modulate T4P-mediated attractions and hence cell motility and colony fluidity.
The effect of Lithium atoms evaporation on the surface of monolayer MoS 2 grown on SiO 2 /Si substrate is studied using ultra high vacuum (UHV ∼ 10 −11 mbar) Raman and circularly polarized photoluminescence spectroscopies, at low Lithium coverage (up to ∼0.17 monolayer). With increasing Li doping, the dominant E 1 2g and A 1g Raman modes of MoS 2 shift in energy and broaden. Additionally, non zone-center phonon modes become Raman active. This regards in particular to double resonance Raman scattering processes, involving longitudinal acoustic (LA) phonon modes at the M and K points of the Brillouin zone of MoS 2 and defects. It is also accompanied by significant decrease in the overall intensity and the degree of circular polarization of the photoluminescence spectrum. The observed changes in the optical spectra are understood as a result of electron doping by Lithium atoms and disorder-activated intervalley scattering of electrons and holes in the electronic band structure of monolayer MoS 2 .
Biofilm formation protects bacteria from antibiotics. Very little is known about the response of biofilm-dwelling bacteria to antibiotics at the single cell level. Here, we developed a cell-tracking approach to investigate how antibiotics affect structure and dynamics of colonies formed by the human pathogen Neisseria gonorrhoeae. Antibiotics targeting different cellular functions enlarge the cell volumes and modulate within-colony motility. Focusing on azithromycin and ceftriaxone, we identify changes in type 4 pilus (T4P) mediated cell-to-cell attraction as the molecular mechanism for different effects on motility. By using strongly attractive mutant strains, we reveal that the survivability under ceftriaxone treatment depends on motility. Combining our results, we find that sequential treatment with azithromycin and ceftriaxone is synergistic. Taken together, we demonstrate that antibiotics modulate T4P-mediated attractions and hence cell motility and colony fluidity.Author SummaryAggregation into colonies and biofilms can enhance bacterial survivability under antibiotic treatment. Aggregation requires modulation of attractive forces between neighboring bacteria, yet the link between attraction and survivability is poorly characterized. Here, we quantify these attractive interactions and show that different antibiotics enhance or inhibit them. Live-cell tracking of single cells in spherical colonies enables us to correlate attractive interactions with single cell motility and colony fluidity. Even moderate changes in cell-to-cell attraction caused by antibiotics strongly impact on within-colony motility. Vice versa, we reveal that motility correlates with survivability under antibiotic treatment. In summary, we demonstrate a link between cellular attraction, colony fluidity, and survivability with the potential to optimize the treatment strategy of commonly used drug combinations.
Bacterial type 4 pili (T4P) are extracellular polymers that serve both as adhesins and molecular motors. Functionally, they are involved in adhesion, colony formation, twitching motility, and horizontal gene transfer. T4P of the human pathogen Neisseria gonorrhoeae have been shown to enhance survivability under treatment with antibiotics or hydrogen peroxide. However, little is known about the effect of external stresses on T4P production and motor properties. Here, we address this question by directly visualizing gonococcal T4P dynamics. We show that in the absence of stress gonococci produce T4P at a remarkably high rate of ∼200 T4P min–1. T4P retraction succeeds elongation without detectable time delay. Treatment with azithromycin or ceftriaxone reduces the T4P production rate. RNA sequencing results suggest that reduced piliation is caused by combined downregulation of the complexes required for T4P extrusion from the cell envelope and cellular energy depletion. Various other stresses including inhibitors of cell wall synthesis and DNA replication, as well as hydrogen peroxide and lactic acid, inhibit T4P production. Moreover, hydrogen peroxide and acidic pH strongly affect pilus length and motor function. In summary, we show that gonococcal T4P are highly dynamic and diverse external stresses reduce piliation despite the protective effect of T4P against some of these stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.