Objectives: to identify predisposing and enabling factors as well as the health needs associated with the discontinuance of outpatient follow-up of newborns who were hospitalized at neonatal intensive care unit. Methods: cross-sectional study, using the behavioral model of health services use. The study was composed of 358 mothers and newborns referred to the outpatient follow-up after discharge. Characterization, perception of social support, postnatal depression, and attendance to appointments data were collected, analyzed by the R software (3.3.1). Results: outpatient follow-up was discontinued by 31.28% of children in the first year after discharge. In multiple regression analysis, the chance of discontinuance was higher for newborns who used mechanical ventilation (OR = 1.68; 95%CI 1.04-2.72) and depended on technology (OR = 3.54; 95%CI 1.32-9.5). Conclusions: predisposing factors were associated with the discontinuance of follow-up; enabling factors and health needs did not present a significant association. Children with more complex health conditions require additional support to participate in follow-up programs, thus ensuring the continuity of care.
Baseando-se em sua interdisciplinaridade e grande escopo em aplicações do mundo real, é clara a necessidade de extrair conhecimento de séries temporais. Porém, minerar dados de séries temporais é uma atividade complexa, devido as suas propriedades particulares. Uma diferente representação dos dados pode superar esses problemas. No presente trabalho, propomos a utilização de um novo atributo retirado do Grafo de Transição de Padrões Ordinais, baseado na probabilidade de auto-transição. Nossa proposta foi testada em um problema real de Computação Urbana, referente à classificação de modos de transporte utilizado pelos usuários. A contribuição deste trabalho está baseada na colaboração desse novo atributo para uma apropriada caracterização e classificação de séries temporais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.