Chagas disease is the most prevalent neglected tropical disease in the Americas and makes an important contribution to morbidity and mortality rates in countries where it is endemic since 30 to 40% of patients develop cardiac diseases, gastrointestinal disorders, or both. In this paper, a new species of the genus Triatoma is described based on specimens collected in the Department San Miguel, Province of Corrientes, Argentina. Triatoma rosai sp. nov. is closely related to T. sordida (Stål, 1859), and was characterized based on integrative taxonomy using morphological, morphometric, molecular data, and experimental crosses. These analyses, combined with data from the literature (cytogenetics, electrophoresis pattern, molecular analyses, cuticular hydrocarbons pattern, geometric morphometry, cycle, and average time of life as well as geographic distribution) confirm the specific status of T. rosai sp. nov. Natural Trypanosoma cruzi infection, coupled with its presence mostly in peridomestic habitats, indicates that this species can be considered as an important Chagas disease vector from Argentina.
Triatoma sordida is among the main Brazilian species considered as Chagas disease vectors. The genetic studies are directed mainly to phylogenetic questions because this species possibly have suffered cryptic speciation. Furthermore, there are few studies that analyzed the structure and genetic variability of specimens from Brazil and that showed low genetic diversity and strong genetic structuring of the population samples. Therefore, because of great epidemiological importance of T. sordida and mainly the restriction of genetic characterization of this vector only for populations of Minas Gerais state, this article performs a genetic analysis of the T. sordida from seven different Brazilian states (representing different biomes), by means of cytogenetic markers. All analyzed specimens presents the same cytogenetic characteristics: early meiotic prophase with several heterochromatic bodies dispersed in the nucleus (CGrich), being one of them formed by the associated sex chromosomes surrounded by some autosomal heterochromatic regions, meiotic metaphase with most autosomal pairs exhibiting a C-heterochromatic block in one chromosomal end (CG-rich), Y sex chromosome fully heterochromatin (AT-rich), and X chromosome may present a small C-block (CG-rich). These results are important because the chromosomal markers enable to confirm and expand the low genetic diversity for all Brazilian states occupied by T. sordida, suggesting that all Brazilian populations were originated from a small ancestral population and possibly dispersed to other biomes by founder effect. In addition, we suggest that T. sordida from Brazil are not suffering cryptic speciation and we confirm the classification of all Brazilian examples as T. sordida sensu stricto.
Background Triatoma sordida is one of the main Chagas disease vectors in Brazil. In addition to Brazil, this species has already been reported in Bolivia, Argentina, Paraguay, and Uruguay. It is hypothesized that the insects currently identified as T. sordida are a species subcomplex formed by three cytotypes (T. sordida sensu stricto [s.s.], T. sordida La Paz, and T. sordida Argentina). With the recent description of T. rosai from the Argentinean specimens, it became necessary to assess the taxonomic status of T. sordida from La Paz, Bolivia, since it was suggested that it may represent a new species, which has taxonomic, evolutionary, and epidemiological implications. Based on the above, we carried out molecular and experimental crossover studies to assess the specific status of T. sordida La Paz. Methods To evaluate the pre- and postzygotic barriers between T. sordida La Paz and T. sordida s.s., experimental crosses and intercrosses between F1 hybrids and between F2 hybrids were conducted. In addition, cytogenetic analyses of the F1 and F2 hybrids were applied with an emphasis on the degree of pairing between the homeologous chromosomes, and morphological analyses of the male gonads were performed to evaluate the presence of gonadal dysgenesis. Lastly, the genetic distance between T. sordida La Paz and T. sordida s.s. was calculated for the CYTB, ND1, and ITS1 genes. Results Regardless of the gene used, T. sordida La Paz showed low genetic distance compared to T. sordida s.s. (below 2%). Experimental crosses resulted in offspring for both directions, demonstrating that there are no prezygotic barriers installed between these allopatric populations. Furthermore, postzygotic barriers were not observed either (since the F1 × F1 and F2 × F2 intercrosses resulted in viable offspring). Morphological and cytogenetic analyses of the male gonads of the F1 and F2 offspring demonstrated that the testes were not atrophied and did not show chromosome pairing errors. Conclusion Based on the low genetic distance (which configures intraspecific variation), associated with the absence of prezygotic and postzygotic reproductive barriers, we confirm that T. sordida La Paz represents only a chromosomal polymorphism of T. sordida s.s. Graphical abstract
Under laboratory conditions, Triatoma rosai and T. sordida are able to cross and produce hybrids. In the face of climate and environmental changes, the study of hybrids of triatomines has evolutionary and epidemiological implications. Therefore, we performed morphological, cytological and molecular studies and characterized the feeding and defecation pattern of hybrids from crosses between T. sordida and T. rosai. The morphological characterization of the female genitalia of the hybrids showed that characteristics of both parental species segregated in the hybrids. Cytogenetic analyzes of hybrids showed regular metaphases. According to molecular studies, the mitochondrial marker Cytochrome B (CytB) related the hybrids with T. sordida and the nuclear marker Internal Transcribed Spacer 1 (ITS-1) related the hybrids with T. rosai. Both parents and hybrids defecated during the blood meal. Thus, the hybrids resulting from the cross between T. sordida and T. rosai presented segregation of phenotypic characters of both parental species, 100% homeology between homeologous chromosomes, phylogenetic relationship with T sordida and with T. rosai (with CytB and ITS-1, respectively), and, finally, feeding and defecation patterns similar to the parents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.