Objectives:After tooth loss, dimensional alterations on the alveolar bone ridge can occur that can negatively affect the placement of dental implants. The purpose of this study was to evaluate the synthesis, and mechanical properties of β-tricalcium phosphate (β-TCP) scaffolds coated with bioabsorbable polymers, namely, collagen and poly (D, L-lactic acid) (PDLLA).Materials and Methods:β-TCP powder was obtained by reactive milling and then characterized by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). β-TCP scaffolds were obtained by replica method, in which polyurethane foams are immersed in β-TCP suspension and thereafter submitted to a thermal treatment to remove the polyurethane and sinter the ceramic. Type-I collagen or PDLLA were used to coat the β-TCP scaffolds by dip-coating method. Scaffolds were separated in four groups depending on the coating material: noncoated (Group A), double immersion in collagen (Group B), double immersion in PDLLA (Group C), and ten immersions in PDLLA (Group D). Samples were characterized by compressive tests and SEM/EDS. Data were statistically analyzed through two-way ANOVA (p = 0.05).Results:Chemical and microscopic analyses revealed proper morphology and chemical composition of powder particles and scaffolds with or without polymeric coatings. Scaffolds coated with PDLLA showed higher compressive strength (0.11 ± 0.054 MPa) than those of collagen (0.022 ± 0.012 MPa) or noncoated groups (0.024 ± 0.012 MPa).Conclusions:The coating method of β-TCP with PDLLA revealed a potential strategy to increase the mechanical strength of porous ceramic materials while collagen can enhance cell migration.
In situ composite manufacture is an approach to improve interfacial adhesion between matrix and reinforcements, in which reinforcements are synthesized along composite processing itself. In situ powder metallurgy route, in particular, offers alternatives to some shortcomings found in other techniques. This work aims not only to review the state of the art on metal matrix composites (MMCs)—including cermets—obtained in situ by powder metallurgy, but also to dissect key aspects related to the development of such materials in order to establish theoretical criteria for decision making before and along experiments. Aspects regarding the design, raw material selection, and processing of such composites were observed and divided between concept, intrinsic, and extrinsic parameters. That way, by means of material databases and computational thermodynamics applied to examples of the reviewed literature, we aim at providing tools in both conducting leaner experiments and richer discussion in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.