We describe a framework in which it is possible to develop and implement algorithms for the approximation of invariant measures of dynamical systems with a given bound on the error of the approximation. Our approach is based on a general statement on the approximation of fixed points for operators between normed vector spaces, allowing an explicit estimation of the error. We show the flexibility of our approach by applying it to piecewise expanding maps and to maps with indifferent fixed points. We show how the required estimations can be implemented to compute invariant densities up to a given error in the $L^{1}$ or $L^\infty $ distance. We also show how to use this to compute an estimation with certified error for the entropy of those systems. We show how several related computational and numerical issues can be solved to obtain working implementations and experimental results on some one dimensional maps
We use Ulam's method to provide rigorous approximation of diffusion coefficients for uniformly expanding maps. An algorithm is provided and its implementation is illustrated using Lanford's map.
We present a general setting in which the formula describing the linear response of the physical measure of a perturbed system can be obtained. In this general setting we obtain an algorithm to rigorously compute the linear response. We apply our results to expanding circle maps. In particular, we present examples where we compute, up to a pre-specified error in the L 鈭瀗orm, the response of expanding circle maps under stochastic and deterministic perturbations. Moreover, we present an example where we compute, up to a pre-specified error in the L 1 -norm, the response of the intermittent family at the boundary; i.e., when the unperturbed system is the doubling map.
We show an elementary method to obtain (finite time and asymptotic) computer assisted explicit upper bounds on convergence to equilibrium (decay of correlations) and escape rates for systems satisfying a Lasota Yorke inequality. The bounds are deduced from the ones of suitable approximations of the system's transfer operator. We also present some rigorous experiments on some nontrivial example
We prove the existence of Noise Induced Order in the Matsumoto-Tsuda model, where it was originally discovered in 1983 by numerical simulations. This is a model of the famous Belosouv-Zabotinsky reaction, a chaotic chemical reaction, and consists of a one dimensional random dynamical system with additive noise. The simulations showed that an increase in amplitude of the noise causes the Lyapunov exponent to decrease from positive to negative; we give a mathematical proof of the existence of this transition. The method we use relies on some computer aided estimates providing a certified approximation of the stationary measure in the L 1 norm. This is realized by explicit functional analytic estimates working together with an efficient algorithm. The method is general enough to be adapted to any piecewise differentiable dynamical system on the unit interval with additive noise. We also prove that the stationary measure of the system varies in a Lipschitz way if the system is perturbed and that the Lyapunov exponent of the system varies in a H枚lder way when the noise amplitude increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.