Abstract.A laser-based cavity ring-down spectroscopy (CRDS) sensor for measurement of hydrogen chloride (HCl) has been developed and characterized. The instrument uses light from a distributed-feedback diode laser at 1742 nm coupled to a high finesse optical cavity to make sensitive and quantifiable concentration measurements of HCl based on optical absorption. The instrument has a (1σ ) limit of detection of <20 pptv in 1 min and has high specificity to HCl. The measurement response time to changes in input HCl concentration is <15 s. Validation studies with a previously calibrated permeation tube setup show an accuracy of better than 10 %. The CRDS sensor was preliminarily tested in the field with two other HCl instruments (mist chamber and chemical ionization mass spectrometry), all of which were in broad agreement. The mist chamber and CRDS sensors both showed a 400 pptv plume within 50 pptv agreement. The sensor also allows simultaneous sensitive measurements of water and methane, and minimal hardware modification would allow detection of other near-infrared absorbers.
Multimode silica step-index optical fibers are examined for use in planar laser-induced fluorescence (PLIF) for combustion diagnostics using ultraviolet (UV) laser sources. The multimode step-index fibers are characterized at UV wavelengths by examining their energy damage thresholds and solarization performance. The beam quality achievable with large clad step-index multimode fibers is also studied. Emphasis is placed on simultaneously achieving high output energy and beam quality (low output M(2)). The use of multimode fibers to deliver UV pulses at 283 nm for PLIF measurements of OH radicals in a Hencken burner is demonstrated. The fiber delivery capability of UV light will benefit combustion diagnostics in hostile environments, such as augmentor and combustor rigs.
A laser-based cavity ring-down spectroscopy (CRDS) sensor for measurement of hydrogen chloride (HCl) has been developed and characterized. The instrument uses light from a distributed-feedback diode laser at 1742 nm coupled to a high finesse optical cavity to make sensitive and quantifiable concentration measurements of HCl based on optical absorption. The instrument has a (1σ) limit of detection of < 20 pptv in 1 min and has high specificity to HCl. The measurement response time to changes in input HCl concentration is < 15 s. Validation studies with a previously calibrated permeation tube setup show an accuracy of better than 10%. The CRDS sensor was preliminarily tested in the field with two other HCl instruments (mist chamber and chemical ionization mass spectrometry), all of which were in broad agreement. The mist chamber and CRDS sensors both showed a 400 pptv plume within 50 pptv agreement. The sensor also allows simultaneous sensitive measurements of water and methane, and minimal hardware modification would allow detection of other near-infrared absorbers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.