Staphylococcus epidermidis is a ubiquitous colonizer of human skin and a common cause of medical device-associated infections. The extent to which the population genetic structure of S. epidermidis distinguishes commensal from pathogenic isolates is unclear. Previously, Bayesian clustering of 437 multilocus sequence types (STs) in the international database revealed a population structure of six genetic clusters (GCs) that may reflect the species' ecology. Here, we first verified the presence of six GCs, including two (GC3 and GC5) with significant admixture, in an updated database of 578 STs. Next, a single nucleotide polymorphism (SNP) assay was developed that accurately assigned 545 (94%) of 578 STs to GCs. Finally, the hypothesis that GCs could distinguish isolation sources was tested by SNP typing and GC assignment of 154 isolates from hospital patients with bacteremia and those with blood culture contaminants and from nonhospital carriage. GC5 was isolated almost exclusively from hospital sources. GC1 and GC6 were isolated from all sources but were overrepresented in isolates from nonhospital and infection sources, respectively. GC2, GC3, and GC4 were relatively rare in this collection. No association was detected between fdh-positive isolates (GC2 and GC4) and nonhospital sources. Using a machine learning algorithm, GCs predicted hospital and nonhospital sources with 80% accuracy and predicted infection and contaminant sources with 45% accuracy, which was comparable to the results seen with a combination of five genetic markers (icaA, IS256, sesD [bhp], mecA, and arginine catabolic mobile element [ACME]). Thus, analysis of population structure with subgenomic data shows the distinction of hospital and nonhospital sources and the near-inseparability of sources within a hospital.
Staphylococcus epidermidis is a leading cause of infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen of a catheter, are more likely to produce PIA-mediated biofilms than those isolates obtained from a low-shear biomaterial-related infection. This suggests that PIA functions as a mechanism that is protective against shear flow. Finally, we performed selection experiments documenting the heterogeneity of biofilm accumulation molecules that function in the absence of PIA, further documenting the biofilm-forming potential of S. epidermidis.
We have previously shown that potentially pathogenic isolates of Staphylococcus epidermidis occur at high incidence in ready-to-eat food. Now, within 164 samples of ready-to-eat meat products we identified 32 S. epidermidis isolates. In 8 isolates we detected the genes encoding for staphylococcal enterotoxins, but in 7 S. epidermidis isolates these genes were not stable over passages. One isolate designated 4S was shown to stably harbour sec and sel genes.In the genome sequence of S. epidermidis 4S we identified 21,426-bp region flanked by direct-repeats, encompassing sec and sel genes, corresponding to the previously described composite staphylococcal pathogenicity island (SePI) in S. epidermidis FRI909. Alignment of S. epidermidis 4S and S. epidermidis FRI909 SePIs revealed 6 nucleotide mismatches located in 5 of the total of 29 ORFs. Genomic location of S. epidermidis 4S SePI was the same as in FRI909. S. epidermidis 4S is a single locus variant of ST561, being genetically different from FRI909. SECepi was secreted by S. epidermidis 4S to BHI broth ranging from 14 to almost 36 μg/mL, to milk ranging from 6-9 ng/mL, to beef meat juice from 2-3 μg/mL and to pork meat juice from 1-2 μg/mL after 24 and 48 hours of cultivation, respectively. We provide the first evidence that S. epidermidis occurring in food bears an element encoding an orthologue to S. aureus SEC, and that SECepi can be produced in microbial broth, milk and meat juices. Regarding that only enterotoxins produced by S. aureus are officially tracked in food in EU, the ability to produce enterotoxin by S. epidermidis pose real risk for food safety.
TLR2 and TLR4 are involved in the response to pneumococcal keratitis and TLR2 may aid in bacterial clearance by recruitment of neutrophils to the cornea, whereas TLR4 may be necessary to modulate the immune response to limit cellular damage.
Purpose-Compare the efficacy of treatment of pneumococcal keratitis with cholesterol, moxifloxacin, or a mixture of the two (moxifloxacin/cholesterol). Materials and Methods-NewZealand white rabbits were injected intrastromally with 10 6 colony-forming units (CFU) of a clinical keratitis strain of Streptococcus pneumoniae. Eyes were examined before and after treatment of topical drops every 2 hr from 25 to 47 hr post-infection (PI). Corneas were harvested to quantitate bacterial CFU, and myeloperoxidase (MPO) activity was measured at 48 hr PI. Eyes were extracted for histology. Minimal inhibitory concentrations (MICs) were determined for each compound.Results-Eyes treated with moxifloxacin/cholesterol had a significantly lower mean slit lamp examination (SLE) score than eyes treated with phosphate-buffered saline (PBS), moxifloxacin alone, or cholesterol alone (P ≤ 0.02). A significantly lower log 10 CFU was recovered from corneas treated with moxifloxacin/cholesterol and moxifloxacin alone as compared to corneas of eyes treated with PBS or cholesterol alone (P < 0.01). At 48 hr PI, significantly lower MPO activity was quantitated from eyes treated with moxifloxacin/cholesterol as compared to eyes treated with cholesterol or moxifloxacin alone (P ≤ 0.046). Eyes treated with moxifloxacin/ cholesterol had fewer immune cells and less corneal destruction than eyes from all other treatment groups. The MIC for moxifloxacin alone was 0.125 µg/mL, and cholesterol alone was unable to inhibit growth at any of the concentrations tested. The MIC for moxifloxacin when combined with 1% cholesterol was 0.0625 µg/mL.Conclusions-Treatment with a mixture of moxifloxacin and cholesterol significantly lowers the severity of infection caused by pneumococcal keratitis as compared to treatment with moxifloxacin alone, cholesterol alone, or PBS. This treatment mixture eradicates the bacteria in the cornea, unlike treatment with PBS or cholesterol alone. Using cholesterol with moxifloxacin as a treatment for bacterial keratitis could help lower the clinical severity of the infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.