BackgroundFear/anxiety and anger/aggression greatly influence health, quality of life and social interactions. They are a huge burden to wellbeing, and personal and public economics. However, while much is known about the physiology and neuroanatomy of such emotions, little is known about their genetics – most importantly, why some individuals are more susceptible to pathology under stress.ResultsWe conducted genomewide association (GWA) mapping of breed stereotypes for many fear and aggression traits across several hundred dogs from diverse breeds. We confirmed those findings using GWA in a second cohort of partially overlapping breeds. Lastly, we used the validated loci to create a model that effectively predicted fear and aggression stereotypes in a third group of dog breeds that were not involved in the mapping studies. We found that i) known IGF1 and HMGA2 loci variants for small body size are associated with separation anxiety, touch-sensitivity, owner directed aggression and dog rivalry; and ii) two loci, between GNAT3 and CD36 on chr18, and near IGSF1 on chrX, are associated with several traits, including touch-sensitivity, non-social fear, and fear and aggression that are directed toward unfamiliar dogs and humans. All four genome loci are among the most highly evolutionarily-selected in dogs, and each of those was previously shown to be associated with morphological traits. We propose that the IGF1 and HMGA2 loci are candidates for identical variation being associated with both behavior and morphology. In contrast, we show that the GNAT3-CD36 locus has distinct variants for behavior and morphology. The chrX region is a special case due to its extensive linkage disequilibrium (LD). Our evidence strongly suggests that sociability (which we propose is associated with HS6ST2) and fear/aggression are two distinct GWA loci within this LD block on chrX, but there is almost perfect LD between the peaks for fear/aggression and animal size.ConclusionsWe have mapped many canine fear and aggression traits to single haplotypes at the GNAT3-CD36 and IGSF1 loci. CD36 is widely expressed, but areas of the amygdala and hypothalamus are among the brain regions with highest enrichment; and CD36-knockout mice are known to have significantly increased anxiety and aggression. Both of the other genes have very high tissue-specificity and are very abundantly expressed in brain regions that comprise the core anatomy of fear and aggression – the amygdala to hypothalamic-pituitary-adrenal (HPA) axis. We propose that reduced-fear variants at these loci may have been involved in the domestication process.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2936-3) contains supplementary material, which is available to authorized users.
Inconsistent tenderness is one of the most detrimental factors of meat quality. Functional proteomics was used to associate electrophoretic bands from the myofibrillar muscle fraction to meat tenderness in an effort to gain understanding of the mechanisms controlling tenderness. The myofibrillar muscle fraction of the Longissimus dorsi from 22 Angus cross steers was analyzed by SDS-PAGE and linearly regressed to Warner-Bratzler shear values. Six significant electrophoretic bands were characterized by electrophoretic and statistical analysis and sequenced by nano-LC-MS/MS. The protein(s)/peptide(s) identified in these bands encompass a wide array of cellular pathways related to structural, metabolic, chaperone, and developmental functions. This study begins to assemble information that has been reported separately into a more complete picture that will lead to the establishment of a coherent mechanism accounting for meat tenderness.
Genetic studies show a general factor associated with all human personality and psychopathology, but its basis is unknown. We performed genome scans of 17 normal and problem behaviors in three multi-breed dog cohorts. 21 of 90 mapped loci were supported for the same, or a related, trait in a second cohort. Several of those loci were also associated with brain structure differences across breeds; and five of the respective top-candidate genes are also associated with human brain structure and function. More broadly, the geneset of canine behavioral scans is supported by enrichment for genes mapped for human behavior, personality, psychopathology and brain structure. The biology implicated includes, neurogenesis, axon guidance, angiogenesis, brain structure, alternative splicing, disease association, Hox-family transcription factors, and subiculum expression. Because dog behavior is correlated with body size, we isolated the effect of body size/height in the dog mapping and in the comparative human UK Biobank analyses. Our dog and human findings are consistent with pleiotropy of diverse brain traits with energy metabolism, height, longevity and reproduction. We propose a genetic network underlies neuron birth and development across the life course, and is associated with evolutionary adaptation of behavior and the general psychopathology factor. This understanding has implications for all common psychiatric disorders, and suggests how their risk could be impacted by environmental effects on the IGF1/growth factor signaling-PI3K-AKT-mTOR axis.
Our objectives were to evaluate potential signaling pathways regulating rumen protozoal chemotaxis using eukaryotic inhibitors potentially coordinated with phagocytosis as assessed by fluorescent bead uptake kinetics. Wortmannin (inhibitor of phosphoinositide 3-kinase), insulin, genistein (purported inhibitor of a receptor tyrosine kinase), U73122 (inhibitor of phospholipase C), and sodium nitroprusside (Snp, nitric oxide generator, activating protein kinase G) were preincubated with mixed ruminal protozoa for 3h before assessing uptake of fluorescent beads and chemosensory behavior to glucose, peptides, and their combination; peptides were also combined with guanosine triphosphate (GTP; a chemorepellent). Entodiniomorphids were chemoattracted to both glucose and peptides, but chemoattraction to glucose was increased by Snp and wortmannin without effect on chemoattraction to peptides. Rate of fluorescent bead uptake by an Entodinium caudatum culture decreased when beads were added simultaneously with feeding and incubated with wortmannin (statistical interaction). Wortmannin also decreased the proportion of mixed entodiniomorphids consuming beads. Isotrichid protozoa exhibited greater chemotaxis to glucose but, compared with entodiniomorphids, were chemorepelled to peptides. Wortmannin increased chemotaxis by entodiniomorphids but decreased chemotaxis to glucose by isotrichids. Motility assays documented that Snp and wortmannin decreased net swimming speed (distance among 2 points per second) but not total swimming speed (including turns) by entodiniomorphids. Wortmannin decreased both net and total swimming behavior in isotrichids. Results mechanistically explain the isotrichid migratory ecology to rapidly take up newly ingested sugars and subsequent sedimentation back to the ventral reticulorumen. In contrast, entodiniomorphids apparently integrate cellular motility with feeding behavior to consume small particulates and thereby stay associated and pass with the degradable fraction of rumen particulates. These results extend findings from aerobic ciliate models to explain how rumen protozoa have adapted physiology for their specific ecological niches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.