Protein interactions are key in vital biological processes. In many cases, particularly in regulation, this interaction is between a protein and a shorter peptide fragment. Such peptides are often part of larger disordered regions in other proteins. The flexible nature of peptides enables the rapid yet specific regulation of important functions in cells, such as their life cycle. Consequently, knowledge of the molecular details of peptide-protein interactions is crucial for understanding and altering their function, and many specialized computational methods have been developed to study them. The recent release of AlphaFold and AlphaFold-Multimer has led to a leap in accuracy for the computational modeling of proteins. In this study, the ability of AlphaFold to predict which peptides and proteins interact, as well as its accuracy in modeling the resulting interaction complexes, are benchmarked against established methods. We find that AlphaFold-Multimer predicts the structure of peptide-protein complexes with acceptable or better quality (DockQ ≥0.23) for 66 of the 112 complexes investigated—25 of which were high quality (DockQ ≥0.8). This is a massive improvement on previous methods with 23 or 47 acceptable models and only four or eight high quality models, when using energy-based docking or interaction templates, respectively. In addition, AlphaFold-Multimer can be used to predict whether a peptide and a protein will interact. At 1% false positives, AlphaFold-Multimer found 26% of the possible interactions with a precision of 85%, the best among the methods benchmarked. However, the most interesting result is the possibility of improving AlphaFold by randomly perturbing the neural network weights to force the network to sample more of the conformational space. This increases the number of acceptable models from 66 to 75 and improves the median DockQ from 0.47 to 0.55 (17%) for first ranked models. The best possible DockQ improves from 0.58 to 0.72 (24%), indicating that selecting the best possible model is still a challenge. This scheme of generating more structures with AlphaFold should be generally useful for many applications involving multiple states, flexible regions, and disorder.
Motivation Interactions between proteins and peptides or peptide-like intrinsically disordered regions are involved in many important biological processes, such as gene expression and cell life-cycle regulation. Experimentally determining the structure of such interactions is time-consuming and difficult because of the inherent flexibility of the peptide ligand. Although several prediction-methods exist, most are limited in performance or availability. Results InterPep2 is a freely available method for predicting the structure of peptide–protein interactions. Improved performance is obtained by using templates from both peptide–protein and regular protein–protein interactions, and by a random forest trained to predict the DockQ-score for a given template using sequence and structural features. When tested on 252 bound peptide–protein complexes from structures deposited after the complexes used in the construction of the training and templates sets of InterPep2, InterPep2-Refined correctly positioned 67 peptides within 4.0 Å LRMSD among top10, similar to another state-of-the-art template-based method which positioned 54 peptides correctly. However, InterPep2 displays a superior ability to evaluate the quality of its own predictions. On a previously established set of 27 non-redundant unbound-to-bound peptide–protein complexes, InterPep2 performs on-par with leading methods. The extended InterPep2-Refined protocol managed to correctly model 15 of these complexes within 4.0 Å LRMSD among top10, without using templates from homologs. In addition, combining the template-based predictions from InterPep2 with ab initio predictions from PIPER-FlexPepDock resulted in 22% more near-native predictions compared to the best single method (22 versus 18). Availability and implementation The program is available from: http://wallnerlab.org/InterPep2. Supplementary information Supplementary data are available at Bioinformatics online.
Protein-peptide interactions play an important role in major cellular processes, and are associated with several human diseases. To understand and potentially regulate these cellular function and diseases it is important to know the molecular details of the interactions. However, because of peptide flexibility and the transient nature of protein-peptide interactions, peptides are difficult to study experimentally. Thus, computational methods for predicting structural information about protein-peptide interactions are needed. Here we present InterPep, a pipeline for predicting protein-peptide interaction sites. It is a novel pipeline that, given a protein structure and a peptide sequence, utilizes structural template matches, sequence information, random forest machine learning, and hierarchical clustering to predict what region of the protein structure the peptide is most likely to bind. When tested on its ability to predict binding sites, InterPep successfully pinpointed 255 of 502 (50.7%) binding sites in experimentally determined structures at rank 1 and 348 of 502 (69.3%) among the top five predictions using only structures with no significant sequence similarity as templates. InterPep is a powerful tool for identifying peptide-binding sites; with a precision of 80% at a recall of 20% it should be an excellent starting point for docking protocols or experiments investigating peptide interactions. The source code for InterPred is available at http://wallnerlab.org/InterPep/.
Protein-peptide interactions play an important role in major cellular processes, and are associated with several human diseases. To understand and potentially regulate these cellular function and diseases it is important to know the molecular details of the interactions. However, because of peptide flexibility and the transient nature of protein-peptide interactions, peptides are difficult to study experimentally. Thus, computational methods for predicting structural information about protein-peptide interactions are needed. Here we present InterPep, a pipeline for predicting protein-peptide interaction sites. It is a novel pipeline that, given a protein structure and a peptide sequence, utilizes structural template matches, sequence information, random forest machine learning, and hierarchical clustering to predict what region of the protein structure the peptide is most likely to bind. When tested on its ability to predict binding sites, InterPep successfully pinpointed 255 of 502 (50.7%) binding sites in experimentally determined structures at rank 1 and 348 of 502 (69.3%) among the top five predictions using only structures with no significant sequence similarity as templates. InterPep is a powerful tool for identifying peptide-binding sites; with a precision of 80% at a recall of 20% it should be an excellent starting point for docking protocols or experiments investigating peptide interactions. The source code for InterPred is available at http://wallnerlab.org/InterPep/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.