BackgroundAdverse drug events (ADEs) as well as other preventable adverse events in the hospital setting incur a yearly monetary cost of approximately $3.5 billion, in the United States alone. Therefore, it is of paramount importance to reduce the impact and prevalence of ADEs within the healthcare sector, not only since it will result in reducing human suffering, but also as a means to substantially reduce economical strains on the healthcare system. One approach to mitigate this problem is to employ predictive models. While existing methods have been focusing on the exploitation of static features, limited attention has been given to temporal features.MethodsIn this paper, we present a novel classification framework for detecting ADEs in complex Electronic health records (EHRs) by exploiting the temporality and sparsity of the underlying features. The proposed framework consists of three phases for transforming sparse and multi-variate time series features into a single-valued feature representation, which can then be used by any classifier. Moreover, we propose and evaluate three different strategies for leveraging feature sparsity by incorporating it into the new representation.ResultsA large-scale evaluation on 15 ADE datasets extracted from a real-world EHR system shows that the proposed framework achieves significantly improved predictive performance compared to state-of-the-art. Moreover, our framework can reveal features that are clinically consistent with medical findings on ADE detection.ConclusionsOur study and experimental findings demonstrate that temporal multi-variate features of variable length and with high sparsity can be effectively utilized to predict ADEs from EHRs. Two key advantages of our framework are that it is method agnostic, i.e., versatile, and of low computational cost, i.e., fast; hence providing an important building block for future exploitation within the domain of machine learning from EHRs.Electronic supplementary materialThe online version of this article (10.1186/s12911-018-0717-4) contains supplementary material, which is available to authorized users.
When using electronic health record (EHR) data to build models for predicting adverse drug effects (ADEs), one is typically facing the problem of data sparsity, i.e., drugs and diagnosis codes that could be used for predicting a certain ADE are absent for most observations. For such tasks, the ability to effectively handle sparsity by the employed machine learning technique is crucial. The state-of-the-art random forest algorithm is frequently employed to handle this type of data. It has however recently been demonstrated that the algorithm is biased towards the majority class, which may result in a low predictive performance on EHR data with large numbers of sparse features. In this study, approaches to handle this problem are empirically evaluated using 14 ADE datasets and three performance metrics; F1-score, AUC and Brier score. Two resampling based techniques are investigated and compared to two baseline approaches. The experimental results indicate that, for larger forests, the resampling methods outperform the baseline approaches when considering F1-score, which is consistent with the metric being affected by class bias. The approaches perform on a similar level with respect to AUC, which can be explained by the metric not being sensitive to class bias. Finally, when considering the squared error (Brier score) of individual predictions, one of the baseline approaches turns out to be ahead of the others. A bias-variance analysis shows that this is an effect of the individual trees being more correct on average for the baseline approach and that this outweighs the expected loss from a lower variance. The main conclusion is that the suggested choice of approach to handle sparsity is highly dependent on the performance metric, or the task, of interest. If the task is to accurately assign an ADE to a patient record, a sampling based approach is recommended. If the task is to rank patients according to risk of a certain ADE, the choice of approach is of minor importance. Finally, if the task is to accurately assign probabilities for a certain ADE, then one of the baseline approaches is recommended.
Time series classification has received great attention over the past decade with a wide range of methods focusing on predictive performance by exploiting various types of temporal features. Nonetheless, little emphasis has been placed on interpretability and explainability. In this paper, we formulate the novel problem of explainable time series tweaking, where, given a time series and an opaque classifier that provides a particular classification decision for the time series, we want to find the minimum number of changes to be performed to the given time series so that the classifier changes its decision to another class. We show that the problem is NP-hard, and focus on two instantiations of the problem, which we refer to as reversible and irreversible time series tweaking. The classifier under investigation is the random shapelet forest classifier. Moreover, we propose two algorithmic solutions for the two problems along with simple optimizations, as well as a baseline solution using the nearest neighbor classifier. An extensive experimental evaluation on a variety of real datasets demonstrates the usefulness and effectiveness of our problem formulation and solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.