Human babesiosis is a tick-borne multisystem disease, and current treatments have both adverse side effects and a significant rate of drug failure. Lawres et al. report that endochin-like quinolones, in combination with atovaquone, cure experimental babesiosis in immunodeficient mice.
Non-covalent encapsulation is an attractive ap-ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website. This includes synthetic details and characterization, binding constant and kinetic experiments, details of radiochemical yield determination, stability, MTT assays and SPECT imaging experiments.
An effective strategy to control blood-borne diseases and prevent outbreak recrudescence involves targeting conserved metabolic processes that are essential for pathogen viability. One such target for
Plasmodium
and
Babesia,
the infectious agents of malaria and babesiosis, respectively, is the mitochondrial cytochrome
bc
1
protein complex, which can be inhibited by endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen
Babesia duncani
to evaluate the structure-activity relationship, safety, efficacy and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which, alone, or in combination with atovaquone, eliminates
B. microti
and
B. duncani
infections
in vitro
and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability and long half-life of this experimental therapy makes it an ideal clinical candidate for the treatment of human infections caused by
Babesia
and its closely related apicomplexan parasites.
Babesiosis is an emerging tick-borne disease caused by apicomplexan parasites of the genus Babesia. With its increasing incidence worldwide and the risk of human-to-human transmission through blood transfusion, babesiosis is becoming a rising public health concern. The current arsenal for the treatment of human babesiosis is limited and consists of combinations of atovaquone and azithromycin or clindamycin and quinine. These combination therapies were not designed based on biological criteria unique to Babesia parasites, but were rather repurposed based on their well-established efficacy against other apicomplexan parasites. However, these compounds are associated with mild or severe adverse events and a rapid emergence of drug resistance, thus highlighting the need for new therapeutic strategies that are specifically tailored to Babesia parasites. Herein, we review ongoing babesiosis therapeutic and management strategies and their limitations, and further review current efforts to develop new, effective, and safer therapies for the treatment of this disease.
Guanine-rich DNA and RNA sequences can fold into higher-order structures known as G-quadruplexes (or G4-DNA and G4-RNA, respectively). The prevalence of the G4 landscapes in the human genome, transcriptome and ncRNAome (non-coding RNA), collectively known as G4ome, is strongly suggestive of biological relevance at multiple levels (gene expression, replication). Small-molecules can be used to track G4s in living cells for the functional characterization of G4s in both normal and disease-associated changes in cell biology. Here, we describe biotinylated biomimetic ligands referred to as BioTASQ and their use as molecular tools that allow for isolating G4s through affinity pull-down protocols. We demonstrate the general applicability of the method by purifying biologically relevant G4s from nucleic acid mixtures
in vitro
and from human cells through the G4RP-RT-qPCR protocol. Overall, the results presented here represent a step towards the optimization of G4-RNAs identification, a key step in studying G4s in cell biology and human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.