ABSTRACT:In this article, the graft copolymerization of methyl methacrylate (MMA) onto sago starch (AGU) was carried out in aqueous medium using potassium persulfate (PPS) under nitrogen gas atmosphere. The maximum percentage of grafting achieved was 90% under optimized conditions of reaction temperature, monomer, PPS, AGU, and reaction period corresponding to 50°C, 47 mmol, 1.82 mmol, 6.17 ϫ 10 Ϫ3 mol L Ϫ1 , and 1.5 h, respectively. The grafting of MMA onto sago starch was confirmed by the differences in infrared spectroscopy. The viscosity measurement and the average molecular weight determination were estimated using Huggin's and Mark Houwink's equations, respectively. This material may have application as a biodegradable plastic.
ABSTRACT:The graft copolymerization of methyl methacrylate (MMA) onto sago starch was carried out in aqueous media by different initiators of ceric ammonium nitrate (CAN) and potassium persulfate (PPS) and under a nitrogen gas atmosphere. Using CAN as an initiator, the maximum percentage of grafting (%G) was ascertained to be 246% at the following optimum conditions: a 70°C reaction temperature, a 2-h reaction period, 2.0 mmol of CAN, 0.4 mmol of nitric acid, and 141 mmol of MMA. The maximum %G achieved with PPS as the initiator was 90%. The optimum conditions were a 50°C reaction temperature, a 1.5-h reaction period, 47 mmol of monomer, and 1.82 mmol of PPS. The grafting of MMA onto sago starch was confirmed by the IR spectra of pure sago starch, MMA, and MMA grafted sago starch. This material may have application as a biodegradable plastic.
A new, rapid, and direct method was developed for the determination of moisture content in biodiesel produced from various types of oils using Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflectance (ATR) element. Samples of biodiesels used in this study were produced using sludge palm oil (SPO). The calibration set was prepared by spiking double‐distilled water into dried biodiesel samples in ratios (w/w) between 0 and 10% moisture. Absorbance values from the wavelength regions 3,700–3,075 and 1,700–1,500 cm−1, and the partial least square (PLS) regression method were used to derive a FTIR spectroscopic calibration model for moisture content in biodiesel samples. The coefficient of determinations (R2) for the models was computed by comparing the results obtained from FTIR spectroscopy against the values of the moisture concentrations (%) determined using the American Oil Chemists’ Society (AOCS) oven method Ca 2d‐25. Same comparison was done using International Union of Pure and Applied Chemistry (IUPAC) distillation method 2.602. R2 was 0.9793 and 0.9700 using AOCS and IUPAC methods, respectively. The standard error (SE) of calibration was 1.84. The calibration model was cross validated within the same set of samples, and the standard deviation (SD) of the difference for repeatability (SDDr) and accuracy (SDDa) of the FTIR method was determined. With its speed and ease of data manipulation, FTIR spectroscopy is a useful alternative method to other methods for rapid and routine determination of moisture content in biodiesel for quality control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.