Multi-walled carbon nanotubes (MWCNTs), dispersed in suspensions consisting mainly of individual tubes, were used for intratracheal instillation and inhalation studies. Rats intratracheally received a dose of 0.2 mg, or 1 mg of MWCNTs and were sacrificed from 3 days to 6 months. MWCNTs induced a pulmonary inflammation, as evidenced by a transient neutrophil response in the low-dose groups, and presence of small granulomatous lesion and persistent neutrophil infiltration in the high-dose groups. In the inhalation study, rats were exposed to 0.37 mg/m(3) aerosols of well-dispersed MWCNTs (>70% of MWCNTs were individual fibers) for 4 weeks, and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inhalation exposures delivered less amounts of MWCNTs into the lungs, and therefore less pulmonary inflammation responses was observed, as compared to intratracheal instillation. The results of our study show that well-dispersed MWCNT can produce pulmonary lesions, including inflammation.
Since nanoparticles easily agglomerate to form larger particles, it is important to maintain the size of their agglomerates at the nano-level to evaluate the harmful effect of the nanoparticles. We prevented agglomeration of nickel oxide nanoparticles by ultrasound diffusion and filtration, established an acute exposure model using animals, and examined inflammation and chemokine expression. The mass median diameter of nickel oxide nanoparticle agglomerates suspended in distilled water for intratracheal instillation was 26 nm (8.41 nm weighted average surface primary diameter). Male Wistar rats received intratracheal instillation of nickel oxide nanoparticles at 0.1 mg (0.33 mg/kg) or 0.2 mg (0.66 mg/kg), and were dissected 3 days, 1 week, 1 month, 3 months, and 6 months after the instillation. The control group received intratracheal instillation of distilled water. Three chemokines (cytokine-induced neutrophil chemoattractant-1 (CINC-1), CINC-2alphabeta, and CINC-3) in the lung tissue and bronchoalveolar lavage fluid (BALF) were determined by quantitative measurement of protein by ELISA. Both CINC-1 and CINC-2alphabeta concentration was elevated from day 3 to 3 months in lung tissue and from day 3 to 6 months in BALF. On the other hand, CINC-3 was elevated on day 3 in both lung tissue and BALF, and then decreased. The total cell and neutrophil counts in BALF were increased from day 3 to 3 months. In lung tissue, infiltration of mainly neutrophils and alveolar macrophages was observed from day 3 to 6 months in alveoli. These results suggest that CINC was involved in lung injury by nickel oxide nanoparticles.
Focusing on the "size" impact of particles, the objective of this study was to analyze morphological and qualitative changes over time in the development of inflammation and collagen deposition in lung tissue after intratracheal instillation of two sizes of nickel oxide in rats, in comparison with the results of instillation of crystalline silica and titanium dioxide. The fine-sized nickel oxide sample (nNiOm: median diameter of agglomerated particles 0.8 microm) was prepared from crude particles of nickel oxide (median diameter of primary particle 27 nm) by liquid-phase separation. Another samples of micrometer-sized nickel oxide (NiO: median diameter of particles 4.8 microm), crystalline silica (Min-U-SIL-5; geometric mean diameter 1.6 microm, geometric standard deviation [GSD] 2.0), and TiO(2) (geometric mean diameter 1.5 microm, GSD 1.8) were also used. Well-sonicated samples of 2 mg per 0.4 ml saline or saline alone (control) were intratracheally instilled into Wistar rats (males, 10 wk old). Bronchoalveolar lavage fluid (BAL)F and lung tissue were examined at 3 days, 1 wk, 1 mo, 3 mo, and 6 mo after instillation, from 5 rats of each group. Histopathological findings showed that the infiltration of macrophages or polymorphonuclear cells and the alveolitis in rats treated with nNiOm were remarkable over time and similar to the effects of crystalline silica. The numbers of total cells in BALF and the percentage of plymorphonuclear leukocytes (PMNs) also increased in the nNiOm group and silica group. The point counting method (PCM) showed a significant increase of inflammatory area, with the peak at 3 mo after instillation in the nNiOm group. In contrast, NiO treatment showed only a slight inflammatory change. Collagen deposition in two regions in the lung tissue (alveolar duct and pleura) showed an increasing collagen deposition rate in nNiOm at 6 mo. Our results suggest that submicrometer nano-nickel oxide is associated with greater toxicity, as for crystalline silica, than micrometer-sized nickel oxide. Biological effects of factors of particle size reduction, when dealing with finer particles such as nanoparticles, were reconfirmed to be important in the evaluation of respirable particle toxicity.
Diesel exhaust particles (DEP), an environmental pollutant, are known to induce lung cancer in experimental animals. To clarify whether reactive oxygen species (ROS) are involved in its carcinogenic mechanism, we examined the levels of 8-hydroxyguanine (8-OH-Gua), its total repair and the repair enzyme OGG1 mRNA in female Fischer 344 rat lungs, as markers of the response to ROS, after DEP was intratracheally instilled. The 8-OH-Gua levels in both DEP-treated groups (2 and 4 mg) were increased during the 2-8 h following exposure to DEP. The 8-OH-Gua repair activities in the DEP-treated groups decreased during the period from 2 h to 2 days following DEP exposure and then recovered to the level of the control group at 5 days after exposure. OGG1 mRNA was induced in rats treated with 4 mg DEP for 5-7 days after administration. In conclusion, the 8-OH-Gua level in rat lung DNA increases markedly at an early phase after DEP exposure, by the generation of ROS and the inhibition of 8-OH-Gua repair activity, and induction of OGG1 mRNA is also a good marker of cellular oxidative stress during carcinogenesis.
The objective of this study was to examine what kinds of cytokines are related to lung disorder by well-dispersed nanoparticles. The mass median diameter of nickel oxide in distilled water was 26 nm. Rats intratracheally received 0.2 mg of nickel oxide suspended in distilled water, and were sacrificed from three days to six months. The concentrations of 21 cytokines including inflammation, fibrosis and allergy-related ones were measured in the lung. Infiltration of alveolar macrophages was observed persistently in the nickel oxide-exposed group. Expression of macrophage inflammatory protein-1alpha showed a continued increase in lung tissue and broncho-alveolar lavage fluid (BALF) while interleukin-1alpha (IL-1alpha), IL-1beta in lung tissue and monocyte chemotactic protein-1 in BALF showed transient increases. Taken together, it was suggested that nano-agglomerates of nickel oxide nanoparticles have a persistent inflammatory effect, and the transient increase in cytokine expression and persistent increases in CC chemokine were involved in the persistent pulmonary inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.