Multi-scale/multi-level geographic object-based image analysis (MS-GEOBIA) methods are becoming widely-used in remote sensing because single-scale/single-level (SS-GEOBIA) methods are often unable to obtain an accurate segmentation and classification of all land use/land cover (LULC) types in an image. However, there have been few comparisons between SS-GEOBIA and MS-GEOBIA approaches for the purpose of mapping a specific LULC type, so it is not well understood which is more appropriate for this task. In addition, there are few methods for automating the selection of segmentation parameters for MS-GEOBIA, while manual selection (i.e., trial-and-error approach) of parameters can be quite challenging and time-consuming. In this study, we examined SS-GEOBIA and MS-GEOBIA approaches for extracting residential areas in Landsat 8 imagery, and compared naï ve and parameter-optimized segmentation approaches to assess whether unsupervised segmentation parameter optimization (USPO) could improve the extraction of residential areas. Our main findings were: (i) the MS-GEOBIA approaches achieved higher classification accuracies than the SS-GEOBIA approach, and (ii) USPO
We found that three types of tethered surface model undergo a first-order phase transition between the smooth and the crumpled phase. The first and the third are discrete models of Helfrich, Polyakov, and Kleinert, and the second is that of Nambu and Goto. These are curvature models for biological membranes including artificial vesicles. The results obtained in this paper indicate that the first-order phase transition is universal in the sense that the order of the transition is independent of discretization of the Hamiltonian for the tethered surface model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.