Chalcone synthases, which biosynthesize chalcones (the starting materials for many flavonoids), have been believed to be specific to plants. However, the rppA gene from the Gram-positive, soil-living filamentous bacterium Streptomyces griseus encodes a 372-amino-acid protein that shows significant similarity to chalcone synthases. Several rppA-like genes are known, but their functions and catalytic properties have not been described. Here we show that a homodimer of RppA catalyses polyketide synthesis: it selects malonyl-coenzyme-A as the starter, carries out four successive extensions and releases the resulting pentaketide to cyclize to 1,3,6,8-tetrahydroxynaphthalene (THN). Site-directed mutagenesis revealed that, as in other chalcone synthases, a cysteine residue is essential for enzyme activity. Disruption of the chromosomal rppA gene in S. griseus abolished melanin production in hyphae, resulting in 'albino' mycelium. THN was readily oxidized to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin), which then randomly polymerized to form various coloured compounds. THN formed by RppA appears to be an intermediate in the biosynthetic pathways for not only melanins but also various secondary metabolites containing a naphthoquinone ring. Therefore, RppA is a chalcone-synthase-related synthase that synthesizes polyketides and is found in the Streptomyces and other bacteria.
Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.
Claisen-type cyclization is assumed to be involved in formation of aromatic compounds by some fungal type I PKSs. These PKSs have a quite identical architecture of active site domain organization, beta-ketoacyl synthase, acyltransferase, tandem ACPs and thioesterase (TE) domains. Since the C-terminus region of WA PKS of this type was determined to be involved in Claisen-type cyclization of the second ring of naphthopyrone, we propose that the so far called TE of these PKSs work not just as TE but as Claisen cyclase.
The solanapyrone biosynthetic gene cluster was cloned from Alternaria solani. It consists of six genes-sol1-6-coding for a polyketide synthase, an O-methyltransferase, a dehydrogenase, a transcription factor, a flavin-dependent oxidase, and cytochrome P450. The prosolanapyrone synthase (PSS) encoded by sol1 was expressed in Aspergillus oryzae and its product was identified as desmethylprosolanapyrone I (8). Although PSS is closely related to the PKSs/Diels-Alderases LovB and MlcA of lovastatin and compactin biosynthesis, it did not catalyze cycloaddition. Sol5, encoding a flavin-dependent oxidase (solanapyrone synthase, SPS), was expressed in Pichia pastoris and purified. The purified recombinant SPS showed activity for the formation of (-)-solanapyrone A (1) from achiral prosolanapyrone II (2), establishing that this single enzyme catalyzes both the oxidation and the subsequent cycloaddition reaction, possibly as a Diels-Alder enzyme.
Human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have an endless self-renewal capacity and can theoretically differentiate into all types of lineages. They thus represent an unlimited source of cells for therapies of regenerative diseases, such as Duchenne muscular dystrophy (DMD), and for tissue repair in specific medical fields. However, at the moment, the low number of efficient specific lineage differentiation protocols compromises their use in regenerative medicine. We developed a two-step procedure to differentiate hESCs and dystrophic hiPSCs in myogenic cells. The first step was a culture in a myogenic medium and the second step an infection with an adenovirus expressing the myogenic master gene MyoD. Following infection, the cells expressed several myogenic markers and formed abundant multinucleated myotubes in vitro. When transplanted in the muscle of Rag/mdx mice, these cells participated in muscle regeneration by fusing very well with existing muscle fibers. Our findings provide an effective method that will permit to use hESCs or hiPSCs for preclinical studies in muscle repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.