This paper describes an experimental study on the friction drag reduction on the compliant wall. In the fluid dynamics, the research on the turbulent friction drag reduction is one of the important subjects. The use of the compliant wall has the possibilities of the friction drag reduction. Many researchers have investigated the effects of the compliant wall since 1960’s. However, the past studies are focused on those effects such as dependency of the material properties and flow conditions. Those effects are intimately related with the turbulent flow fields. In order to clarify the mechanism of the drag reduction, the coherent structures near the wall surface must be investigated. The purpose of the present study is to investigate the vortical semi-periodic motions over the solid and compliant walls in detail. The experiments are conducted at Re = 5.0 × 105 based on unit length and the free stream velocity using the NPL type wind tunnel. The compliant wall is made of silicone resin with Young’s modulus E = 2.83 MPa. The boundary layer flows are measured using the single and X-array hot wire probe. The VITA and four quadrant analyses are applied to investigate the bursting phenomena in the turbulent flow structures. The experimental results show that the skin friction drag over the compliant wall is smaller than that on the solid wall about 15%. Further the bursting frequencies over the compliant wall are greater than those over the solid wall. The four quadrant analysis is also applied to investigate the turbulent coherent motions. These results show that the ejection event over the compliant wall is increased. The contribution rate of the ejection event to the Reynolds stress over the compliant wall is greater than that of the sweep event. The increment of the bursting frequency is consistent with that of the ejection event. The friction drag decreases because the velocity near the wall is decelerated when the contribution rates in second and third quadrants to the Reynolds stress increase. These tendencies are also confirmed over the compliant wall with the various thicknesses. The present results show that the friction drag reduction over the compliant wall is related with the increment of contribution rate of the ejection event in the bursting phenomena.
New method and means are proposed to measure the skin friction force on an aerodynamic surface based on elastic deformations of silicon rubber and gel coatings. One of characteristics is soft and easy to deform. Object is coated by elastic polymeric film with known shear modulus. Two images between wind-on and wind-off are taken using the CCD camera. The displacement of coating is calculated from the correlation of two images. There are two ways to calibrate the skin friction force to the displacement of coatings. These methods are tested and compared to quantitative skin friction force measurement. One is based on measuring the characteristics of the polymeric film using visco-elastic measurement system. This way is called as a priori calibration. The other way is accomplished from the relation between the skin friction force measured by the PHF embedded on the object and the displacement around there and is known as In-situ method. Characteristics of the coatings such as the displacement and the time response can be easily controlled by the compounding ratio of hardener. We conduct the theoretical analysis for the elastic polymer film and propose the material properties of the coatings required to measure the surface skin friction in the wide range of flow speed. The skin friction over the plate is measured using this technique in various Reynolds number. The traditional measurement using the hot wire anemometry is conducted to validate this technique. The time averaged measurements of this technique are in good agreement with the traditional results. However, the unsteady characteristics of surface skin friction are not captured by the lack of time resolution of the CCD camera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.