Under suitable experimental conditions the aerobic oxidation of NADH catalyzed by horseradish peroxidase occurred in four characteristic phases: initial burst, induction phase, steady state, and termination. A trace amount of H2O2 present in the NADH solution brought about initial burst in the formation of oxyperoxidase. About 2 mol of oxyperoxidase was formed per mol of H2O2. When a considerable amount of the ferric enzyme still remained, the initial burst was followed by an induction phase. In this phase the rate of oxyperoxidase formation from the ferric enzyme increased with the decrease of the ferric enzyme and an approximately exponential increase of oxyperoxidase was observed. A rapid oxidation of NADH suddenly began at the end of the induction phase and the oxidation continued at a relatively constant rate. In the steady state, oxygen was consumed and H2O2 accumulated. A drastic terminating reaction suddenly set in when the oxygen concentration decreased under a certain level. During the reaction, H2O2 disappeared accompanying an accelerated oxidation of NADH and the enzyme returned to the ferric form after a transient increase of peroxidase compound II. Time courses of NADH oxidation, O2 consumption, H2O2 accumulation, and formation of enzyme intermediates could be simulated with an electronic computer using 11 elementary reactions and 9 rate equations. The results were also discussed in relation to the mechanism for oscillatory responses of the reaction that appeared in an open system with a continuous supply of oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.