This study investigated thermal cracking and catalytic upgrading of waste from electric and electronic equipment (WEEE) plastics on a semi-batch reactor coupled to a heated catalyst fixed bed (2-stage vapor cracking). The catalyst used is a Si–Al ash obtained from commercial activated carbon pellets treated with concentrated NaOH solution and calcination. The purpose of the study was to characterize the waste stream through its thermogravimetry analysis and pyrolysis products, study the effect of temperature (350–500 °C) and catalyst quantity (0.0–7.5 %.wt) on yields of reaction products, physical chemical properties, and chemical composition of bio-oil in order to understand and evaluate production of fuels and chemical feedstock by recycling of WEEE plastic through catalytic upgrading. Time-fractioned samples were taken in determined reaction times (15, 30, 45, and 60 min) to study the evolution of cracking reactions during experiment runs through changes to chemical composition (GC/MS). A comparison with other previous work is also presented to show similarities between different feedstocks using the same thermal unit. The results indicate composition of brominated acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and high impact polystyrene (HIPS) for the WEEE plastic. The temperature of 350 °C produced better results when considering acid value but presented lower bio-oil yields (38%) and high gas yields (42%). Catalytic upgrading experiments revealed the increased presence of polycyclic aromatic hydrocarbons (PAH) with an increase in viscosity of bio-oil, increase in char yield (from 11% to 24%), and decrease in gas yields (15% to 5%). Chemical composition showed presence of aromatic hydrocarbons such as styrene, methyl-styrene, and diphenyl-propane and nitrogenated compounds such as benzene-butane-nitrile, phenolic compounds, PAHs, and brominated compounds. WEEE plastic pyrolysis is a challenging subject due to contaminant presence and varying composition, and chemical composition evaluation according to reaction time provides interesting insights into the evolution of semi-batch pyrolysis/catalytic upgrading experiments. Standardization and reproducibility of the tool should be conducted to continue the evaluation of pyrolysis and catalytic upgrading of a wide range of feedstocks.
Hydrothermal processing of biomass may be able to overcome a series of problems associated with the thermochemical conversion of lignocellulosic material into energy and fuels. Investigating the process parameters and an adequate process description is one of the first steps to being able to design and optimize a certain treatment concept. In the present article, we studied process evolution with respect to reaction time in order to evaluate structure changes and kinetics of corn stover decomposition in a hydrothermal reactor. The effect of the biomass-to-H2O ratio was also investigated. A pilot-scale reactor of 18.75 L was used to conduct hydrothermal processing runs at 250 °C at different reaction times (60, 120 and 240 min) and biomass-to-H2O ratios (1:10, 1:15 and 1:20). Solid phase products were characterized by thermogravimetry (TG), scanning electron microscopy (SEM), elemental composition (EDX), crystalline phases by X-ray diffraction (XRD) and surface area (BET). For the experiments with a constant reaction time, the yields of hydro-char, aqueous and gaseous phases varied between 31.08 and 35.82% (wt.), 54.59 and 60.83% (wt.) and 8.08 and 9.58% (wt.), respectively. The yields of hydro-char and gases tend to increase with higher biomass-to-H2O ratios, while aqueous phase yields are lower when using lower ratios. As expected, the yields of liquid and gases are higher when using higher reaction times, but there is a reduction in hydro-char yields. TG showed that 60 min was not enough to completely degrade the corn stover, while 120 and 240 min presented similar results, indicating an optimized time of reaction between 120 and 240 min. SEM images, elemental composition and XRD of hydro-char showed that higher biomass-to-H2O ratios increase the carbonization of corn stover. The surface area analysis of hydro-char obtained at 250 °C, 2.0 °C/min, a biomass-to-H2O ratio of 1:10 and 240 min showed a surface area of 4.35 m2/g, a pore volume of 18.6 mm3/g and an average pore width of 17.08 μm. The kinetic of corn stover degradation or bio-char formation was correlated with a pseudo-first-order exponential model, exhibiting a root-mean-square error (r2) of 1.000, demonstrating that degradation kinetics of corn stover with hot-compressed H2O, expressed as hydro-char formation, is well described by an exponential decay kinetics.
In this work, the effect of reaction time and biomass-to-H2O ratio on the structural evolution of hydro-char and kinetic of by hydrothermal processing of corn Stover with hot compressed H2O, have been systematically investigated. The experiments were carried out at 250 °C, heating rate of 2.0 °C/min, biomass-to-H2O ratio of 1:10, and reaction times of 60, 120, and 240 minutes, and at 250 °C, 240 minutes, heating rate of 2.0 °C/min, and biomass-to-H2O water ratio of 1:10, 1:15, and 1:20, using a pilot scale stirred tank reactor of 5 gallon. The characterization of solid phase products performed by thermo-gravimetric analysis, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental analysis (C, N, H, S). The physical-chemistry properties of solid phase analyzed in terms of dry matter (DM), total organic content (TOC), and ash. The yields of solid and gas phases decrease linearly with decreasing biomass-to-H2O ratio, while that of liquid phases increases linearly. For constant biomass-to-H2O ratio, the yields of solid, liquid, and gaseous reaction products varied between 52.97 and 35.82% (wt.), 44.84 and 54.59% (wt.), and 2.19 and 9.58% (wt.), respectively. The yield of solids decreases exponentially by decreasing the reaction time, while the yields of liquid and gas phases increase exponentially. For constant biomass-to-H2O ratio, TG/DTG curves shows that reaction time of 60 minutes was not enough to carbonize corn Stover. For constant reaction time, TG/DTG curves shows that increasing the H2O-to-biomass ratio worse the carbonization of corn Stover. For constant biomass-to-H2O ratio, the SEM images show the main morphological structure of the corn Stover remains practically unchanged, while for constant reaction time, SEM images show that plant microstructure retains part of its original morphology, demonstrating that a decrease on biomass-to-H2O ratio worse the carbonization of corn Stover. For constant biomass-to-H2O ratio, the EDX analysis shows that the carbon content in hydro-char increases with reaction time, while for constant reaction time, the carbon content decreases with increasing biomass-to-H2O ratio. The kinetic of corn Stover degradation was correlated with a pseudo-first order exponential model, exhibiting a root-mean-square error (r2) of 1.000, demonstrating that degradation kinetics of corn Stover with hot compressed H2O, expressed as hydro-char formation, is well described by an exponential decay kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.